Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 6, Pages 876–891
DOI: https://doi.org/10.4213/mzm701
(Mi mzm701)
 

This article is cited in 4 scientific papers (total in 4 papers)

The Mixed Problem for the Laplace Equation in an Exterior Domain with an Arbitrary Partition of the Boundary

P. A. Krutitskii

M. V. Lomonosov Moscow State University
Full-text PDF (247 kB) Citations (4)
References:
Abstract: In this paper we propose a method for solving the mixed boundary-value problem for the Laplace equation in a connected exterior domain with an arbitrary partition of the boundary. All simple closed curves making up the boundary are divided into three sets. On the elements of the first set the Dirichlet condition is given, on the elements of the second set the third boundary condition is prescribed, and the third set, in turn, is divided into two subsets of simple closed arcs, with the Dirichlet condition prescribed on the elements of one of these subsets and the third boundary condition on the elements of the other subset. The problem is reduced to a uniquely solvable Fredholm equation of the second kind in a Banach space. The third boundary-value problem and the mixed Dirichlet–Neumann problem are particular cases of the problem under study.
Received: 30.08.1998
Revised: 23.08.1999
English version:
Mathematical Notes, 2001, Volume 69, Issue 6, Pages 799–813
DOI: https://doi.org/10.1023/A:1010282415663
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: P. A. Krutitskii, “The Mixed Problem for the Laplace Equation in an Exterior Domain with an Arbitrary Partition of the Boundary”, Mat. Zametki, 69:6 (2001), 876–891; Math. Notes, 69:6 (2001), 799–813
Citation in format AMSBIB
\Bibitem{Kru01}
\by P.~A.~Krutitskii
\paper The Mixed Problem for the Laplace Equation in an Exterior Domain with an Arbitrary Partition of the Boundary
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 6
\pages 876--891
\mathnet{http://mi.mathnet.ru/mzm701}
\crossref{https://doi.org/10.4213/mzm701}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1861569}
\zmath{https://zbmath.org/?q=an:0993.35030}
\elib{https://elibrary.ru/item.asp?id=13361647}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 6
\pages 799--813
\crossref{https://doi.org/10.1023/A:1010282415663}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169913100020}
Linking options:
  • https://www.mathnet.ru/eng/mzm701
  • https://doi.org/10.4213/mzm701
  • https://www.mathnet.ru/eng/mzm/v69/i6/p876
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024