Abstract:
It is proved that a quasiconvex sequencelambda $\{\lambda_\nu\}$ of convergence factors transforms Fourier series of functions whose moduli of continuity do not exceed a given modulus of continuity $\omega(\delta)$ into uniformly convergent series if and only iflambda $\lambda_n\omega(1/n)\log n\to0$. The sufficiency of this condition is already known.
Citation:
S. A. Telyakovskii, “Quasiconvex uniform-convergence factors for Fourier series of functions with a given modulus of continuity”, Mat. Zametki, 8:5 (1970), 619–623; Math. Notes, 8:5 (1970), 817–819
\Bibitem{Tel70}
\by S.~A.~Telyakovskii
\paper Quasiconvex uniform-convergence factors for Fourier series of functions with a~given modulus of continuity
\jour Mat. Zametki
\yr 1970
\vol 8
\issue 5
\pages 619--623
\mathnet{http://mi.mathnet.ru/mzm7009}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=279517}
\zmath{https://zbmath.org/?q=an:0216.39103|0206.35102}
\transl
\jour Math. Notes
\yr 1970
\vol 8
\issue 5
\pages 817--819
\crossref{https://doi.org/10.1007/BF01146938}
Linking options:
https://www.mathnet.ru/eng/mzm7009
https://www.mathnet.ru/eng/mzm/v8/i5/p619
This publication is cited in the following 4 articles:
N. Yu. Agafonova, S. S. Volosivets, “Multipliers of Convergence in Norm of Series with Respect to Multiplicative Systems”, Math. Notes, 82:4 (2007), 433–442
H.J Mertens, R.J Nessel, “An equivalence theorem concerning multipliers of strong convergence”, Journal of Approximation Theory, 30:4 (1980), 284
H. J. Mertens, R. J. Nessel, “Über Multiplikatoren starker Konvergenz für FOURIER‐Entwicklungen in BANACH‐Räumen”, Mathematische Nachrichten, 84:1 (1978), 185
H. J. Mertens, R. J. Nessel, G. Wilmes, Lecture Notes in Mathematics, 556, Approximation Theory, 1976, 320