Abstract:
Best-possible conditions, in S. M. Nikol'skii's classes Hαp, are established for the localization of rectangular (or, as they are sometimes called, Pringsheim) partial sums of multiple trigonometric Fourier series.
Citation:
V. A. Il'in, “Conditions for the localization of partial sums of S. M. Nikol'skii's class of multiple trigonometric Fourier series”, Mat. Zametki, 8:5 (1970), 595–606; Math. Notes, 8:5 (1970), 803–809
\Bibitem{Ili70}
\by V.~A.~Il'in
\paper Conditions for the localization of partial sums of S.\,M.~Nikol'skii's class of multiple trigonometric Fourier series
\jour Mat. Zametki
\yr 1970
\vol 8
\issue 5
\pages 595--606
\mathnet{http://mi.mathnet.ru/mzm7007}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=276687}
\zmath{https://zbmath.org/?q=an:0216.39701|0212.09503}
\transl
\jour Math. Notes
\yr 1970
\vol 8
\issue 5
\pages 803--809
\crossref{https://doi.org/10.1007/BF01146936}
Linking options:
https://www.mathnet.ru/eng/mzm7007
https://www.mathnet.ru/eng/mzm/v8/i5/p595
This publication is cited in the following 5 articles:
A. M. D'yachenko, “Rate of Pointwise Approximation of Functions by the Cesàro (C,β)-Means of Their Fourier Series”, Math. Notes, 88:2 (2010), 198–208
M. I. Dyachenko, “Some problems in the theory of multiple trigonometric series”, Russian Math. Surveys, 47:5 (1992), 103–171
Sh. A. Alimov, V. A. Il'in, E. M. Nikishin, “Convergence problems of multiple trigonometric series and spectral decompositions. I”, Russian Math. Surveys, 31:6 (1976), 29–86
L. V. Zhizhiashvili, “Some problems in the theory of simple and multiple trigonometric and orthogonal series”, Russian Math. Surveys, 28:2 (1973), 65–127
N. Ch. Krutitskaya, “Best possible localization conditions for rectangular Cesáro means and Abel means in restricted summability of a multiple trigonometric Fourier series in Liouville classes”, Math. USSR-Izv., 7:3 (1973), 589–599