Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 6, Pages 866–875
DOI: https://doi.org/10.4213/mzm700
(Mi mzm700)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity

A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (204 kB) Citations (1)
References:
Abstract: We consider the boundary-value problem
$$ u_{tt}+\varepsilon u_t+(1+\varepsilon\alpha\cos 2\tau)\sin u =\varepsilon\sigma^2u_{xx}, \qquad u_x|_{x=0}=u_x|_{x=\pi}=0, $$
, where $0<\varepsilon\ll1$, $\tau=(1+\varepsilon\delta)t$, $\alpha,\sigma>0$, and the sign of $\delta$ is arbitrary. It is proved that for an appropriate choice of the external parameters $\alpha$ and $\delta$ and for sufficiently small $\sigma$ the number of exponentially stable solutions $2\pi$-periodic in $\tau$ can be made equal to an arbitrary predefined number.
Received: 31.01.2000
English version:
Mathematical Notes, 2001, Volume 69, Issue 6, Pages 790–798
DOI: https://doi.org/10.1023/A:1010230431593
Bibliographic databases:
UDC: 517.926
Language: Russian
Citation: A. Yu. Kolesov, N. Kh. Rozov, “The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity”, Mat. Zametki, 69:6 (2001), 866–875; Math. Notes, 69:6 (2001), 790–798
Citation in format AMSBIB
\Bibitem{KolRoz01}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 6
\pages 866--875
\mathnet{http://mi.mathnet.ru/mzm700}
\crossref{https://doi.org/10.4213/mzm700}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1861568}
\zmath{https://zbmath.org/?q=an:0991.35051}
\elib{https://elibrary.ru/item.asp?id=5022581}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 6
\pages 790--798
\crossref{https://doi.org/10.1023/A:1010230431593}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169913100019}
Linking options:
  • https://www.mathnet.ru/eng/mzm700
  • https://doi.org/10.4213/mzm700
  • https://www.mathnet.ru/eng/mzm/v69/i6/p866
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024