|
This article is cited in 1 scientific paper (total in 1 paper)
The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity
A. Yu. Kolesova, N. Kh. Rozovb a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
We consider the boundary-value problem
$$
u_{tt}+\varepsilon u_t+(1+\varepsilon\alpha\cos 2\tau)\sin u
=\varepsilon\sigma^2u_{xx},
\qquad
u_x|_{x=0}=u_x|_{x=\pi}=0,
$$ ,
where $0<\varepsilon\ll1$, $\tau=(1+\varepsilon\delta)t$, $\alpha,\sigma>0$, and the sign of $\delta$ is arbitrary. It is proved that for an appropriate choice of the external parameters $\alpha$ and $\delta$ and for sufficiently small $\sigma$ the number of exponentially stable solutions $2\pi$-periodic in $\tau$ can be made equal to an arbitrary predefined number.
Received: 31.01.2000
Citation:
A. Yu. Kolesov, N. Kh. Rozov, “The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity”, Mat. Zametki, 69:6 (2001), 866–875; Math. Notes, 69:6 (2001), 790–798
Linking options:
https://www.mathnet.ru/eng/mzm700https://doi.org/10.4213/mzm700 https://www.mathnet.ru/eng/mzm/v69/i6/p866
|
|