Abstract:
Conditions are found in the fulfillment of which each non-trivial solution of the equation uPrime+ $u''+\beta(t)u'+\alpha(t)u=0$, where $\beta(t)\in L(a,b)$ and $(t-a)(t-b)\alpha(t)\in L(a,b)$ has not more than one zero on the interval $a\le t\le b$.
Citation:
I. T. Kiguradze, “Conditions for non-oscillation of singular linear differential equations of second order”, Mat. Zametki, 6:5 (1969), 633–639; Math. Notes, 6:5 (1969), 843–847
\Bibitem{Kig69}
\by I.~T.~Kiguradze
\paper Conditions for non-oscillation of singular linear differential equations of second order
\jour Mat. Zametki
\yr 1969
\vol 6
\issue 5
\pages 633--639
\mathnet{http://mi.mathnet.ru/mzm6972}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=259245}
\zmath{https://zbmath.org/?q=an:0196.10203}
\transl
\jour Math. Notes
\yr 1969
\vol 6
\issue 5
\pages 843--847
\crossref{https://doi.org/10.1007/BF01101415}
Linking options:
https://www.mathnet.ru/eng/mzm6972
https://www.mathnet.ru/eng/mzm/v6/i5/p633
This publication is cited in the following 1 articles:
V. V. Napalkov, A. U. Mullabaeva, “Kratnaya interpolyatsionnaya zadacha Valle Pussena”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:1 (2015), 63–77