Abstract:
This note contains the proof of a theorem on the characterization of a normal law on locally compact Abelian groups, this theorem being a generalization of S. N. Bernshtein's wellknown characterization of the normal law by the property that sums and differences of two independent random variables are also random variables.
This publication is cited in the following 11 articles:
L. B. Klebanov, “Kharakterizatsii veroyatnostnykh raspredelenii svoistvami lineinykh form so sluchainymi koeffitsientami”, Veroyatnost i statistika. 30, Zap. nauchn. sem. POMI, 501, POMI, SPb., 2021, 181–193
Gennadiy Feldman, “The Kac–Bernstein functional equation on Abelian groups”, Aequat. Math., 95:4 (2021), 737
E. I. Zelenov, “p-Adic Gaussian Random Variables”, Proc. Steklov Inst. Math., 306 (2019), 120–126
G. M. Feldman, “Independent random variables on Abelian groups with independent sum and difference”, Theory Probab. Appl., 61:2 (2017), 335–345
G. M. Feldman, “Gaussian measures in the sence of Bernstein: factorization, supports, zero-one law”, Theory Probab. Appl., 56:3 (2011), 359–375
Feldman G.M., “Gaussovskie raspredeleniya v smysle bernshteina na lokalno kompaktnykh abelevykh gruppakh”, Doklady Akademii nauk, 440:3 (2011), 314–316
G. M. Feldman, “Gaussian distributions in the sense of Bernstein on locally compact Abelian groups”, Dokl. Math., 84:2 (2011), 653
GENNADIY FELDMAN, PIOTR GRACZYK, “THE SKITOVICH–DARMOIS THEOREM FOR LOCALLY COMPACT ABELIAN GROUPS”, J. Aust. Math. Soc., 88:3 (2010), 339
M. V. Mironyuk, G. M. Feldman, “On a characterization theorem on finite Abelian groups”, Siberian Math. J., 46:2 (2005), 315–324
G. M. Feldman, “More on the Skitovich–Darmous theorem for finite Abelian groups”, Theory Probab. Appl., 45:3 (2001), 507–511
G. M. Feldman, “Gaussian distributions on locally compact Abelian groups”, Funct. Anal. Appl., 11:1 (1977), 76–78