Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 5, Pages 652–660
DOI: https://doi.org/10.4213/mzm6908
(Mi mzm6908)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Generalized D'Alembert Operator on Compactified Pseudo-Euclidean Space

A. S. Blagoveshchenskii

Saint-Petersburg State University
Full-text PDF (445 kB) Citations (1)
References:
Abstract: It is proved that the D'Alembert operator in $\mathbb R^n$ with multidimensional time, bordered by operators of multiplication by some function, and subject to an acceptance condition at infinity is a self-adjoint operator with discrete spectrum. The spectrum and eigenfunctions are explicitly described.
Keywords: D'Alembert differential operator, self-adjoint operator, pseudo-Euclidean space, conformal transformation group, Kelvin transformation, Laplace operator, spherical function.
Received: 20.06.2008
Revised: 24.10.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 5, Pages 630–637
DOI: https://doi.org/10.1134/S0001434609050034
Bibliographic databases:
UDC: 517.984.5
Language: Russian
Citation: A. S. Blagoveshchenskii, “The Generalized D'Alembert Operator on Compactified Pseudo-Euclidean Space”, Mat. Zametki, 85:5 (2009), 652–660; Math. Notes, 85:5 (2009), 630–637
Citation in format AMSBIB
\Bibitem{Bla09}
\by A.~S.~Blagoveshchenskii
\paper The Generalized D'Alembert Operator on Compactified Pseudo-Euclidean Space
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 5
\pages 652--660
\mathnet{http://mi.mathnet.ru/mzm6908}
\crossref{https://doi.org/10.4213/mzm6908}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2572856}
\zmath{https://zbmath.org/?q=an:1196.47035}
\elib{https://elibrary.ru/item.asp?id=15312100}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 5
\pages 630--637
\crossref{https://doi.org/10.1134/S0001434609050034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267684500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949142005}
Linking options:
  • https://www.mathnet.ru/eng/mzm6908
  • https://doi.org/10.4213/mzm6908
  • https://www.mathnet.ru/eng/mzm/v85/i5/p652
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:754
    Full-text PDF :380
    References:94
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024