Abstract:
Let Hω, HLω be classes of functions f(x) whose modulus of continuity ω(f;t) and, respectively, integral modulus of continuity ω(f;t)L do not exceed a given modulus of continuity \omega(t),whileH_Visaclassoffunctionsf(x)whosevariation\mathop V\limits_0^1ffdoesnotexceedagivennumberV>0.BoundsareobtainedfortheupperlimitofthebestapproximationsinthemetricofLbyHaar−systempolynomialsontheclassesjustintroduced(ontheclassH_\omega^Lonlywhen\omega(t)=Kt).TheseboundsareexactforclassH_Vand,incase\omega(t)isconvex,alsofortheclassesH_\omegaandH\omega^L$.
Citation:
N. P. Khoroshko, “On the best approximation in the metric of L to certain classes of functions by Haar-system polynomials”, Mat. Zametki, 6:1 (1969), 47–54; Math. Notes, 6:1 (1969), 487–491
\Bibitem{Kho69}
\by N.~P.~Khoroshko
\paper On the best approximation in the metric of $L$ to certain classes of functions by Haar-system polynomials
\jour Mat. Zametki
\yr 1969
\vol 6
\issue 1
\pages 47--54
\mathnet{http://mi.mathnet.ru/mzm6896}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=249895}
\zmath{https://zbmath.org/?q=an:0188.14002|0179.37201}
\transl
\jour Math. Notes
\yr 1969
\vol 6
\issue 1
\pages 487--491
\crossref{https://doi.org/10.1007/BF01450251}
Linking options:
https://www.mathnet.ru/eng/mzm6896
https://www.mathnet.ru/eng/mzm/v6/i1/p47
This publication is cited in the following 6 articles:
Tetiana Kramarenko, Volodymyr Korolskyi, Dmytro Bobyliev, “Mathematical education at Kryvyi Rih State Pedagogical University: history, achievements, and future prospects”, UESIT, 10:4 (2022), 41
Alexander N. Shchitov, “On Approximation of the Continuous Functions of Two Variables by the Fourier-Haar "Angle"”, IJARM, 5 (2016), 23
Alexander N. Shchitov, “The Exact Estimates of Fourier-Haar Coefficients of Functions of Bounded Variation”, IJARM, 4 (2016), 14
Alexander N. Shchitov, “Best One-Sided Approximation of Some Classes of Functions of Several Variables by Haar Polynomials”, IJARM, 6 (2016), 42
S. B. Vakarchuk, A. N. Shchitov, “Estimates for the error of approximation of functions in $L_p^1$ by polynomials
and partial sums of series in the Haar and Faber–Schauder systems”, Izv. Math., 79:2 (2015), 257–287
S. B. Vakarchuk, A. N. Shchitov, “Estimates for the error of approximation of classes of differentiable functions by Faber–Schauder partial sums”, Sb. Math., 197:3 (2006), 303–314