|
Matematicheskie Zametki, 1969, Volume 5, Issue 2, Pages 245–251
(Mi mzm6829)
|
|
|
|
The asymptotic behavior of the spectral function for elliptic operators in an unbounded region
G. I. Bass Serpukhov Engineering High School
Abstract:
We consider elliptic self-adjoint differential operators $L$ of order $2m$ in a bounded region $D\subset R_n$. An asymptotic formula for the function $N(\lambda)=\sum\limits_{\lambda_n<\lambda}1$ the number of eigenvalues of the operator $L$ less than $\lambda$ is proved:
$$
N(\lambda)=M_0\lambda{n/2m}+o(\lambda^{n/2m})
$$
where $\lambda\to+\infty$ and $M_0$ is the following constant:
$$
M_0=\frac{V_D}{(2\pi)^n\Gamma(1+n/2m)}\int_{R_n}e^{-L(s)}\,ds.
$$
Received: 28.02.1968
Citation:
G. I. Bass, “The asymptotic behavior of the spectral function for elliptic operators in an unbounded region”, Mat. Zametki, 5:2 (1969), 245–251; Math. Notes, 5:2 (1969), 149–152
Linking options:
https://www.mathnet.ru/eng/mzm6829 https://www.mathnet.ru/eng/mzm/v5/i2/p245
|
Statistics & downloads: |
Abstract page: | 221 | Full-text PDF : | 77 | First page: | 1 |
|