Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1969, Volume 5, Issue 1, Pages 55–61 (Mi mzm6807)  

This article is cited in 1 scientific paper (total in 3 paper)

On groups acting in phase space

È. È. Shnol'

Applied Mathematics Institute, Academy of Sciences of the USSR
Full-text PDF (528 kB) Citations (3)
Abstract: The problem of the motion of a material point in a central field of general type is considered. It is shown that in the infinite-dimensional group of canonical transformations which leave the Hamiltonian function invariant there are no finite-dimensional subgroups which are significantly larger than the three-dimensional group of rotations (exact formulations in Sec. 3 and Sec. 5).
Received: 22.02.1968
English version:
Mathematical Notes, 1969, Volume 5, Issue 1, Pages 36–39
DOI: https://doi.org/10.1007/BF01098713
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: È. È. Shnol', “On groups acting in phase space”, Mat. Zametki, 5:1 (1969), 55–61; Math. Notes, 5:1 (1969), 36–39
Citation in format AMSBIB
\Bibitem{Shn69}
\by \`E.~\`E.~Shnol'
\paper On groups acting in phase space
\jour Mat. Zametki
\yr 1969
\vol 5
\issue 1
\pages 55--61
\mathnet{http://mi.mathnet.ru/mzm6807}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=241027}
\zmath{https://zbmath.org/?q=an:0184.49802|0175.21202}
\transl
\jour Math. Notes
\yr 1969
\vol 5
\issue 1
\pages 36--39
\crossref{https://doi.org/10.1007/BF01098713}
Linking options:
  • https://www.mathnet.ru/eng/mzm6807
  • https://www.mathnet.ru/eng/mzm/v5/i1/p55
  • This publication is cited in the following 3 articles:
    1. A. I. Aptekarev, A. L. Afendikov, F. I. Ataullakhanov, N. K. Balabaev, V. N. Biktashev, I. V. Biktasheva, R. M. Borisyuk, N. D. Vvedenskaya, R. D. Dagkesamanskii, Yu. G. Zarkhin, Yu. S. Ilyashenko, V. D. Lakhno, V. Yu. Lunin, N. L. Lunina, E. V. Nikolaev, V. S. Posvyanskii, M. A. Roitberg, V. S. Ryaben'kii, L. B. Ryashko, Ya. G. Sinai, V. M. Tikhomirov, A. A. Tokarev, A. G. Urzhumtsev, A. I. Khibnik, “To the memory of Èmmanuil Èl'evich Shnol'”, Russian Math. Surveys, 72:1 (2017), 185–198  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. V. I. Arnol'd, R. M. Borisyuk, I. M. Gel'fand, Yu. S. Ilyashenko, V. Yu. Lunin, E. V. Nikolaev, Yu. B. Radvogin, M. A. Roitberg, Ya. G. Sinai, A. I. Khibnik, “Emmanuil El'evich Shnol' (on his 70th birthday)”, Russian Math. Surveys, 54:3 (1999), 677–683  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. È. È. Shnol', “On groups that correspond to the simplest problems of classical mechanics”, Theoret. and Math. Phys., 11:3 (1972), 557–564  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :99
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025