Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1969, Volume 5, Issue 1, Pages 31–37 (Mi mzm6804)  

This article is cited in 8 scientific papers (total in 8 papers)

The deviation of polygonal functions in the $L_p$ metric

V. F. Storchai

Dnepropetrovsk State University
Full-text PDF (344 kB) Citations (8)
Abstract: The precise value is given of the upper bound of the deviation in the $L_p$ metric $(1\le p<\infty)$ of a function $f(x)$ in the class $H_\omega$, given by a convex modulus of continuity $\omega(t)$, from its polygonal approximation at the points $x_k=k/n$ ($k=0,1,\dots,n$).
Received: 19.01.1968
English version:
Mathematical Notes, 1969, Volume 5, Issue 1, Pages 21–25
DOI: https://doi.org/10.1007/BF01098710
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. F. Storchai, “The deviation of polygonal functions in the $L_p$ metric”, Mat. Zametki, 5:1 (1969), 31–37; Math. Notes, 5:1 (1969), 21–25
Citation in format AMSBIB
\Bibitem{Sto69}
\by V.~F.~Storchai
\paper The deviation of polygonal functions in the $L_p$ metric
\jour Mat. Zametki
\yr 1969
\vol 5
\issue 1
\pages 31--37
\mathnet{http://mi.mathnet.ru/mzm6804}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=239331}
\zmath{https://zbmath.org/?q=an:0177.08802}
\transl
\jour Math. Notes
\yr 1969
\vol 5
\issue 1
\pages 21--25
\crossref{https://doi.org/10.1007/BF01098710}
Linking options:
  • https://www.mathnet.ru/eng/mzm6804
  • https://www.mathnet.ru/eng/mzm/v5/i1/p31
  • This publication is cited in the following 8 articles:
    1. A. A. Shabozova, “Approximation of Curves by Broken Lines in Lp”, Vestnik St.Petersb. Univ.Math., 57:4 (2024), 548  crossref
    2. A. A. Shabozova, “Priblizhenie prostranstvennykh krivykh lomanymi v $L_{p}$”, Tr. IMM UrO RAN, 23, no. 4, 2017, 311–318  mathnet  crossref  elib
    3. Xu, GQ, “The relative n-widths of Sobolev classes with restrictions”, Journal of Approximation Theory, 157:1 (2009), 19  crossref  isi
    4. V. L. Velikin, N. A. Nazarenko, “Studies on extremal problems of spline-approximation”, Ukr Math J, 42:1 (1990), 28  crossref
    5. N. P. Korneichuk, “Widths in $L_p$ of classes of continuous and of differentiable functions, and optimal methods of coding and recovering functions and their derivatives”, Math. USSR-Izv., 18:2 (1982), 227–247  mathnet  crossref  mathscinet  zmath
    6. V. T. Martynyuk, “Approximation by polygonal lines of curves given by parametric equations in the Hausdorff metric”, Ukr Math J, 28:1 (1976), 68  crossref
    7. V. L. Velikin, “Precise approximation values by Hermitian splines on classes of differentiable function”, Math. USSR-Izv., 7:1 (1973), 163–184  mathnet  crossref  mathscinet  zmath
    8. V. T. Martynyuk, V. F. Storchai, “Approximation by polyhedral functions in a hausdorff metric”, Ukr Math J, 25:1 (1973), 98  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :104
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025