Abstract:
The precise value is given of the upper bound of the deviation in the $L_p$ metric $(1\le p<\infty)$ of a function $f(x)$ in the class $H_\omega$, given by a convex modulus of continuity $\omega(t)$, from its polygonal approximation at the points $x_k=k/n$ ($k=0,1,\dots,n$).
\Bibitem{Sto69}
\by V.~F.~Storchai
\paper The deviation of polygonal functions in the $L_p$ metric
\jour Mat. Zametki
\yr 1969
\vol 5
\issue 1
\pages 31--37
\mathnet{http://mi.mathnet.ru/mzm6804}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=239331}
\zmath{https://zbmath.org/?q=an:0177.08802}
\transl
\jour Math. Notes
\yr 1969
\vol 5
\issue 1
\pages 21--25
\crossref{https://doi.org/10.1007/BF01098710}
Linking options:
https://www.mathnet.ru/eng/mzm6804
https://www.mathnet.ru/eng/mzm/v5/i1/p31
This publication is cited in the following 8 articles:
A. A. Shabozova, “Approximation of Curves by Broken Lines in Lp”, Vestnik St.Petersb. Univ.Math., 57:4 (2024), 548
A. A. Shabozova, “Priblizhenie prostranstvennykh krivykh lomanymi v $L_{p}$”, Tr. IMM UrO RAN, 23, no. 4, 2017, 311–318
Xu, GQ, “The relative n-widths of Sobolev classes with restrictions”, Journal of Approximation Theory, 157:1 (2009), 19
V. L. Velikin, N. A. Nazarenko, “Studies on extremal problems of spline-approximation”, Ukr Math J, 42:1 (1990), 28
N. P. Korneichuk, “Widths in $L_p$ of classes of continuous and of differentiable functions, and optimal methods of coding and recovering functions and their derivatives”, Math. USSR-Izv., 18:2 (1982), 227–247
V. T. Martynyuk, “Approximation by polygonal lines of curves given by parametric equations in the Hausdorff metric”, Ukr Math J, 28:1 (1976), 68
V. L. Velikin, “Precise approximation values by Hermitian splines on classes of differentiable function”, Math. USSR-Izv., 7:1 (1973), 163–184
V. T. Martynyuk, V. F. Storchai, “Approximation by polyhedral functions in a hausdorff metric”, Ukr Math J, 25:1 (1973), 98