|
Matematicheskie Zametki, 1968, Volume 4, Issue 6, Pages 649–658
(Mi mzm6785)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
On the greatest length of a dead-end disjunctive normal form for almost all Boolean functions
A. A. Sapozhenko Institute of Mathematics, Siberian Branch of USSR Academy of Sciences
Abstract:
The maximal number $l(f)$ of conjunctions in a dead-end disjunctive normal form (d.n.f.) of a Boolean function $f $and the number $\tau(f)$ of dead-end d.n.f. are important parameters characterizing the complexity of algorithms for finding minimal d.n.f. It is shown that for almost all Boolean functions $l(f)\sim2^{n-1}$, $\log_2\tau(f)\sim2^{n-1}\log_2n\log_2\log_2n$ ($n\to\infty$).
Received: 20.05.1968
Citation:
A. A. Sapozhenko, “On the greatest length of a dead-end disjunctive normal form for almost all Boolean functions”, Mat. Zametki, 4:6 (1968), 649–658; Math. Notes, 4:6 (1968), 881–886
Linking options:
https://www.mathnet.ru/eng/mzm6785 https://www.mathnet.ru/eng/mzm/v4/i6/p649
|
|