|
Matematicheskie Zametki, 1968, Volume 4, Issue 5, Pages 533–540
(Mi mzm6772)
|
|
|
|
This article is cited in 8 scientific papers (total in 8 papers)
On estimates for the Green's function for a multipoint boundary problem
Yu. V. Pokornyi Voronezh State University
Abstract:
We obtain new estimates for the Green's function $G(t,\,s)$ for a boundary problem of the Vallée-Poussin type: under certain hypotheses we prove the existence of non-negative functions $g(t)$, $h(t)$, $u(t)$ such that $g(t)h(s)\le|G(t,s)|\le g(t)$ and $|G(t,s)|\ge u(t)\max\limits_\tau|G(\tau,s)|$, where $h(t)$ and $u(t)$ are positive on sets of positive measure. These estimates allow us to apply effectively the methods of the theory of cones to investigate non-linear boundary problems.
Received: 11.12.1967
Citation:
Yu. V. Pokornyi, “On estimates for the Green's function for a multipoint boundary problem”, Mat. Zametki, 4:5 (1968), 533–540; Math. Notes, 4:5 (1968), 810–814
Linking options:
https://www.mathnet.ru/eng/mzm6772 https://www.mathnet.ru/eng/mzm/v4/i5/p533
|
Statistics & downloads: |
Abstract page: | 421 | Full-text PDF : | 205 | First page: | 1 |
|