Citation:
S. A. Telyakovskii, “On the Rate of Convergence of Fourier Series of Functions of Bounded Variation”, Mat. Zametki, 72:6 (2002), 949–953; Math. Notes, 72:6 (2002), 872–876
\Bibitem{Tel02}
\by S.~A.~Telyakovskii
\paper On the Rate of Convergence of Fourier Series of Functions of Bounded Variation
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 6
\pages 949--953
\mathnet{http://mi.mathnet.ru/mzm677}
\crossref{https://doi.org/10.4213/mzm677}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1964154}
\zmath{https://zbmath.org/?q=an:1026.42009}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 6
\pages 872--876
\crossref{https://doi.org/10.1023/A:1021406416813}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180090200033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141513995}
Linking options:
https://www.mathnet.ru/eng/mzm677
https://doi.org/10.4213/mzm677
https://www.mathnet.ru/eng/mzm/v72/i6/p949
This publication is cited in the following 6 articles:
Azimmohseni M., Soltani A.R., Khalafi M., “Simulation of Real Discrete Time Gaussian Multivariate Stationary Processes With Given Spectral Densities”, J. Time Ser. Anal., 36:6 (2015), 783–796
Mei Y., Yu D., “On the Convergence of Absolute Summability for Functions of Bounded Variation in Two Variables”, Abstract Appl. Anal., 2012, 513206
Jenei, A, “On the rate of convergence of Fourier series of functions of bounded variation in two variables”, Analysis Mathematica, 35:2 (2009), 99
A. S. Belov, S. A. Telyakovskii, “Refinement of the Dirichlet–Jordan and Young's
theorems on Fourier series of functions of bounded variation”, Sb. Math., 198:6 (2007), 777–791
Belov, AS, “An improvement of the Dirichlet-Jordan test for Fourier series of functions of bounded variation”, Doklady Mathematics, 75:1 (2007), 101
D. V. Kurdomonov, “An estimate for the rate of convergence of Fourier–Legendre series of functions of bounded variation”, Russian Math. (Iz. VUZ), 50:7 (2006), 31–42