Loading [MathJax]/jax/output/CommonHTML/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 72, Issue 6, Pages 949–953
DOI: https://doi.org/10.4213/mzm677
(Mi mzm677)
 

This article is cited in 6 scientific papers (total in 6 papers)

Brief Communications

On the Rate of Convergence of Fourier Series of Functions of Bounded Variation

S. A. Telyakovskii

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (240 kB) Citations (6)
References:
Received: 25.10.2001
English version:
Mathematical Notes, 2002, Volume 72, Issue 6, Pages 872–876
DOI: https://doi.org/10.1023/A:1021406416813
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. A. Telyakovskii, “On the Rate of Convergence of Fourier Series of Functions of Bounded Variation”, Mat. Zametki, 72:6 (2002), 949–953; Math. Notes, 72:6 (2002), 872–876
Citation in format AMSBIB
\Bibitem{Tel02}
\by S.~A.~Telyakovskii
\paper On the Rate of Convergence of Fourier Series of Functions of Bounded Variation
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 6
\pages 949--953
\mathnet{http://mi.mathnet.ru/mzm677}
\crossref{https://doi.org/10.4213/mzm677}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1964154}
\zmath{https://zbmath.org/?q=an:1026.42009}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 6
\pages 872--876
\crossref{https://doi.org/10.1023/A:1021406416813}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180090200033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141513995}
Linking options:
  • https://www.mathnet.ru/eng/mzm677
  • https://doi.org/10.4213/mzm677
  • https://www.mathnet.ru/eng/mzm/v72/i6/p949
  • This publication is cited in the following 6 articles:
    1. Azimmohseni M., Soltani A.R., Khalafi M., “Simulation of Real Discrete Time Gaussian Multivariate Stationary Processes With Given Spectral Densities”, J. Time Ser. Anal., 36:6 (2015), 783–796  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    2. Mei Y., Yu D., “On the Convergence of Absolute Summability for Functions of Bounded Variation in Two Variables”, Abstract Appl. Anal., 2012, 513206  crossref  mathscinet  zmath  isi  scopus  scopus
    3. Jenei, A, “On the rate of convergence of Fourier series of functions of bounded variation in two variables”, Analysis Mathematica, 35:2 (2009), 99  crossref  mathscinet  zmath  isi  scopus  scopus
    4. A. S. Belov, S. A. Telyakovskii, “Refinement of the Dirichlet–Jordan and Young's theorems on Fourier series of functions of bounded variation”, Sb. Math., 198:6 (2007), 777–791  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. Belov, AS, “An improvement of the Dirichlet-Jordan test for Fourier series of functions of bounded variation”, Doklady Mathematics, 75:1 (2007), 101  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    6. D. V. Kurdomonov, “An estimate for the rate of convergence of Fourier–Legendre series of functions of bounded variation”, Russian Math. (Iz. VUZ), 50:7 (2006), 31–42  mathnet  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:629
    Full-text PDF :291
    References:98
    First page:3
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025