Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1968, Volume 4, Issue 1, Pages 45–52 (Mi mzm6742)  

Classes of convex sets as generalized metrical spaces

V. A. Sorokin

Tambov Pedagogical Institute
Abstract: The metrization of classes of convex bodies is generalized to a Minkowski space with unsymmetric metric.
Received: 06.02.1967
English version:
Mathematical Notes, 1968, Volume 4, Issue 1, Pages 517–521
DOI: https://doi.org/10.1007/BF01429813
Bibliographic databases:
UDC: 513.83
Language: Russian
Citation: V. A. Sorokin, “Classes of convex sets as generalized metrical spaces”, Mat. Zametki, 4:1 (1968), 45–52; Math. Notes, 4:1 (1968), 517–521
Citation in format AMSBIB
\Bibitem{Sor68}
\by V.~A.~Sorokin
\paper Classes of convex sets as generalized metrical spaces
\jour Mat. Zametki
\yr 1968
\vol 4
\issue 1
\pages 45--52
\mathnet{http://mi.mathnet.ru/mzm6742}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=234353}
\zmath{https://zbmath.org/?q=an:0176.19605|0164.22801}
\transl
\jour Math. Notes
\yr 1968
\vol 4
\issue 1
\pages 517--521
\crossref{https://doi.org/10.1007/BF01429813}
Linking options:
  • https://www.mathnet.ru/eng/mzm6742
  • https://www.mathnet.ru/eng/mzm/v4/i1/p45
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :87
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024