|
Matematicheskie Zametki, 1968, Volume 3, Issue 5, Pages 597–603
(Mi mzm6718)
|
|
|
|
Remarks on Fourier series
R. M. Trigub Sumy branch of Khar'kov Polytechical Institute named after V. I. Lenin
Abstract:
We prove the following propositions. An even integrable function whose Fourier coefficients form a convex sequence is absolutely continuous if and only if its Fourier series converges absolutely. If the function $f(t)$ is convex on $[0,\,\pi]$, $f(t)=f(\pi-t)$, then for odd $n$ $b_n=\frac2\pi\int_0^\pi f(t)\sin nt dt=\frac4\pi\frac{f(\pi/n)}n+\gamma_n$, $\sum_{n>1}|\gamma_n|<10\lceil f(\pi/2)\rceil$ while for even $n$, $b_n=0$.
Received: 28.06.1967
Citation:
R. M. Trigub, “Remarks on Fourier series”, Mat. Zametki, 3:5 (1968), 597–603; Math. Notes, 3:5 (1968), 380–383
Linking options:
https://www.mathnet.ru/eng/mzm6718 https://www.mathnet.ru/eng/mzm/v3/i5/p597
|
Statistics & downloads: |
Abstract page: | 350 | Full-text PDF : | 133 | First page: | 1 |
|