Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1968, Volume 3, Issue 5, Pages 541–546 (Mi mzm6712)  

This article is cited in 2 scientific papers (total in 2 papers)

Limiting distribution for the moment of first loss of a customer in a single-line service system with a limited number of positions in the queue

O. P. Vinogradov

M. V. Lomonosov Moscow State University
Full-text PDF (356 kB) Citations (2)
Abstract: We consider a single-line service system with a Palm arrival rate and exponential service time, with $n-1$ places in the queue. Let $\tau_n$ be the moment of first loss of a customer. It is assumed that $\alpha_0=\int_0^\infty e^{-t}dF(t)\to0$ , where $F(t)$ is the distribution function of the time interval between successive arrivals of customers. We shall study the class of limiting distributions of the quantity $\tau_n\delta(\alpha_0)$, where $\delta(\alpha_0)$ is some normalizing factor. We shall obtain conditions for which $P\{\tau_n/M\tau_n<t\}\to1-e^{-t}$.
Received: 21.11.1967
English version:
Mathematical Notes, 1968, Volume 3, Issue 5, Pages 345–348
DOI: https://doi.org/10.1007/BF01150987
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: O. P. Vinogradov, “Limiting distribution for the moment of first loss of a customer in a single-line service system with a limited number of positions in the queue”, Mat. Zametki, 3:5 (1968), 541–546; Math. Notes, 3:5 (1968), 345–348
Citation in format AMSBIB
\Bibitem{Vin68}
\by O.~P.~Vinogradov
\paper Limiting distribution for the moment of first loss of a~customer in a~single-line service system with a~limited number of positions in the queue
\jour Mat. Zametki
\yr 1968
\vol 3
\issue 5
\pages 541--546
\mathnet{http://mi.mathnet.ru/mzm6712}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=226754}
\zmath{https://zbmath.org/?q=an:0196.20303|0174.21502}
\transl
\jour Math. Notes
\yr 1968
\vol 3
\issue 5
\pages 345--348
\crossref{https://doi.org/10.1007/BF01150987}
Linking options:
  • https://www.mathnet.ru/eng/mzm6712
  • https://www.mathnet.ru/eng/mzm/v3/i5/p541
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :97
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024