Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1968, Volume 3, Issue 5, Pages 523–527 (Mi mzm6709)  

The effect of an involution in $\widetilde K^0(ZG)$

I. Reiner
Abstract: The involution in the Grothendieck group of the group ring of a finite cyclic group of prime order $p$, induced by the transition to the contragredient module is identical to complex conjugation followed by the automorphism $x\to x^{-1}$ in the ideal class group of the cyclotomic field of order $p$.
English version:
Mathematical Notes, 1968, Volume 3, Issue 5, Pages 333–336
DOI: https://doi.org/10.1007/BF01150984
Bibliographic databases:
UDC: 513.83
Language: Russian
Citation: I. Reiner, “The effect of an involution in $\widetilde K^0(ZG)$”, Mat. Zametki, 3:5 (1968), 523–527; Math. Notes, 3:5 (1968), 333–336
Citation in format AMSBIB
\Bibitem{Rei68}
\by I.~Reiner
\paper The effect of an involution in $\widetilde K^0(ZG)$
\jour Mat. Zametki
\yr 1968
\vol 3
\issue 5
\pages 523--527
\mathnet{http://mi.mathnet.ru/mzm6709}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=229696}
\zmath{https://zbmath.org/?q=an:0174.05504}
\transl
\jour Math. Notes
\yr 1968
\vol 3
\issue 5
\pages 333--336
\crossref{https://doi.org/10.1007/BF01150984}
Linking options:
  • https://www.mathnet.ru/eng/mzm6709
  • https://www.mathnet.ru/eng/mzm/v3/i5/p523
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024