|
This article is cited in 1 scientific paper (total in 1 paper)
Beste Approximation von Elementen eines nuklearen Raumes
A. A. Zakharov V. A. Steklov Institute of Mathematics, Sverdlovsk Branch of the Academy of Sciences of USSR
Abstract:
We show that
$$
|f(x)-V_{n,m}(f,x)|\leqslant\frac C{m+1}\sum^n_{k=n-m}E_k\left[1+\ln\left(1+\frac{n-m}{k-n+m+1}\right)\right],
$$
for every continuous function with period $2M$, where $C$ is an absolute constant and $0\le m\le n$, and we then apply this bound.
Received: 24.07.1967
Citation:
A. A. Zakharov, “Beste Approximation von Elementen eines nuklearen Raumes”, Mat. Zametki, 3:1 (1968), 77–84; Math. Notes, 3:1 (1968), 45–49
Linking options:
https://www.mathnet.ru/eng/mzm6654 https://www.mathnet.ru/eng/mzm/v3/i1/p77
|
Statistics & downloads: |
Abstract page: | 216 | Full-text PDF : | 105 | First page: | 1 |
|