Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 4, Pages 603–615
DOI: https://doi.org/10.4213/mzm6641
(Mi mzm6641)
 

This article is cited in 2 scientific papers (total in 2 papers)

Equivariant Topological Classification of the Fano Varieties of Real Four-Dimensional Cubics

V. A. Krasnov

P. G. Demidov Yaroslavl State University
Full-text PDF (547 kB) Citations (2)
References:
Abstract: The equivariant topological type of the Fano variety parametrizing the set of lines on a nonsingular real hypersurface of degree three in a five-dimensional projective space is calculated. In the investigation of this Fano variety, results and constructions of the paper by Finashin and Kharlamov on the rigid projective classification of real four-dimensional cubics are used. The construction of Hassett (from the paper devoted to special four-dimensional cubics) is also applied.
Keywords: threefold, Fano variety, equivariant topological type, complex projective space, cubic fourfold, Grassman manifold, equivariant diffeomorphism, K3 surface.
Received: 01.02.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 4, Pages 574–583
DOI: https://doi.org/10.1134/S0001434609030286
Bibliographic databases:
UDC: 512.7
Language: Russian
Citation: V. A. Krasnov, “Equivariant Topological Classification of the Fano Varieties of Real Four-Dimensional Cubics”, Mat. Zametki, 85:4 (2009), 603–615; Math. Notes, 85:4 (2009), 574–583
Citation in format AMSBIB
\Bibitem{Kra09}
\by V.~A.~Krasnov
\paper Equivariant Topological Classification of the Fano Varieties of Real Four-Dimensional Cubics
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 4
\pages 603--615
\mathnet{http://mi.mathnet.ru/mzm6641}
\crossref{https://doi.org/10.4213/mzm6641}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2549421}
\zmath{https://zbmath.org/?q=an:1173.14345}
\elib{https://elibrary.ru/item.asp?id=15296759}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 4
\pages 574--583
\crossref{https://doi.org/10.1134/S0001434609030286}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266561100028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949156912}
Linking options:
  • https://www.mathnet.ru/eng/mzm6641
  • https://doi.org/10.4213/mzm6641
  • https://www.mathnet.ru/eng/mzm/v85/i4/p603
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025