Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 3, Pages 356–372
DOI: https://doi.org/10.4213/mzm6634
(Mi mzm6634)
 

This article is cited in 1 scientific paper (total in 1 paper)

Surface Basic Sets with Wildly Embedded Supporting Surfaces

E. V. Zhuzhomaa, V. S. Medvedevb

a Nizhny Novgorod State Pedagogical University
b Research Institute for Applied Mathematics and Cybernetics, N. I. Lobachevski State University of Nizhnii Novgorod
Full-text PDF (604 kB) Citations (1)
References:
Abstract: The situation where a “nice” diffeomorphism $f$ of a 3-manifold has a wildly embedded invariant surface $M$ for which the restriction $g=f|_M\colon M\to M$ is “nice” is considered.
Keywords: Anosov diffeomorphism, 3-manifold, Morse–Smale diffeomorphism, nonwandering set, surface basic set, wildly embedded supporting surface, conjugate diffeomorphisms.
Received: 28.10.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 3, Pages 353–365
DOI: https://doi.org/10.1134/S0001434609030067
Bibliographic databases:
UDC: 517.938
Language: Russian
Citation: E. V. Zhuzhoma, V. S. Medvedev, “Surface Basic Sets with Wildly Embedded Supporting Surfaces”, Mat. Zametki, 85:3 (2009), 356–372; Math. Notes, 85:3 (2009), 353–365
Citation in format AMSBIB
\Bibitem{ZhuMed09}
\by E.~V.~Zhuzhoma, V.~S.~Medvedev
\paper Surface Basic Sets with Wildly Embedded Supporting Surfaces
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 3
\pages 356--372
\mathnet{http://mi.mathnet.ru/mzm6634}
\crossref{https://doi.org/10.4213/mzm6634}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2548044}
\zmath{https://zbmath.org/?q=an:1195.57048}
\elib{https://elibrary.ru/item.asp?id=15305471}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 3
\pages 353--365
\crossref{https://doi.org/10.1134/S0001434609030067}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266561100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949151831}
Linking options:
  • https://www.mathnet.ru/eng/mzm6634
  • https://doi.org/10.4213/mzm6634
  • https://www.mathnet.ru/eng/mzm/v85/i3/p356
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:439
    Full-text PDF :189
    References:76
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024