Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 6, Pages 925–937
DOI: https://doi.org/10.4213/mzm6617
(Mi mzm6617)
 

This article is cited in 3 scientific papers (total in 3 papers)

A Generalization of the Menshov–Rademacher Theorem

P. A. Yaskov

M. V. Lomonosov Moscow State University
Full-text PDF (571 kB) Citations (3)
References:
Abstract: For a sequence $\{X_n\}_{n\ge1}$ of random variables with finite second moment and a sequence $\{b_n\}_{n\ge1}$ of positive constants, new sufficient conditions for the almost sure convergence of $\sum_{n\ge1}X_n/b_n$ are obtained and the strong law of large numbers, which states that $\lim_{n\to\infty}\sum_{k=1}^nX_k/b_n=0$ almost surely, is proved. The results are shown to be optimal in a number of cases. In the theorems, assumptions have the form of conditions on $\rho_n=\sup_k(\mathsf EX_kX_{k+n})^+$,
$$r_n=\sup_k\frac{(\mathsf EX_kX_{k+n})^+}{(\mathsf EX_k^2)^{1/2}(\mathsf EX_{k+n}^2)^{1/2}},$$
$\mathsf EX_n^2$, and $b_n$, where $x^+=x\vee0$ and $n\in\mathbb N$.
Keywords: strong law of large numbers, random variable, second moment, almost sure convergence, Menshov–Rademacher theorem, Kolmogorov's 0–1 law.
Received: 20.12.2008
Revised: 06.04.2009
English version:
Mathematical Notes, 2009, Volume 86, Issue 6, Pages 861–872
DOI: https://doi.org/10.1134/S0001434609110285
Bibliographic databases:
UDC: 519.21
Language: Russian
Citation: P. A. Yaskov, “A Generalization of the Menshov–Rademacher Theorem”, Mat. Zametki, 86:6 (2009), 925–937; Math. Notes, 86:6 (2009), 861–872
Citation in format AMSBIB
\Bibitem{Yas09}
\by P.~A.~Yaskov
\paper A Generalization of the Menshov--Rademacher Theorem
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 6
\pages 925--937
\mathnet{http://mi.mathnet.ru/mzm6617}
\crossref{https://doi.org/10.4213/mzm6617}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2643459}
\zmath{https://zbmath.org/?q=an:1181.60043}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 6
\pages 861--872
\crossref{https://doi.org/10.1134/S0001434609110285}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273362000028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-73949120442}
Linking options:
  • https://www.mathnet.ru/eng/mzm6617
  • https://doi.org/10.4213/mzm6617
  • https://www.mathnet.ru/eng/mzm/v86/i6/p925
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:707
    Full-text PDF :221
    References:60
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024