|
This article is cited in 3 scientific papers (total in 3 papers)
Two New Approaches to Obtaining Estimates in the Danzer–Grünbaum Problem
L. V. Buchok M. V. Lomonosov Moscow State University
Abstract:
We use probabilistic methods to estimate the cardinality of a set $S$ in a Euclidean space such that no three points of $S$ form a right or an obtuse angle. Let $a(n)$ be the cardinality of a maximal subset $S\subset\mathbb R^n$ with this property. We prove that
$$
a(n)\ge\frac23\biggl\lfloor\sqrt2\biggl(\frac2{\sqrt3}\biggr)^n\biggr\rfloor.
$$
Keywords:
Euclidean space, angle, set of points, Danzer–Grünbaum problem, Erdős–Füredi method.
Received: 29.12.2008
Citation:
L. V. Buchok, “Two New Approaches to Obtaining Estimates in the Danzer–Grünbaum Problem”, Mat. Zametki, 87:4 (2010), 519–527; Math. Notes, 87:4 (2010), 489–496
Linking options:
https://www.mathnet.ru/eng/mzm6610https://doi.org/10.4213/mzm6610 https://www.mathnet.ru/eng/mzm/v87/i4/p519
|
Statistics & downloads: |
Abstract page: | 419 | Full-text PDF : | 223 | References: | 45 | First page: | 7 |
|