Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 4, Pages 519–527
DOI: https://doi.org/10.4213/mzm6610
(Mi mzm6610)
 

This article is cited in 3 scientific papers (total in 3 papers)

Two New Approaches to Obtaining Estimates in the Danzer–Grünbaum Problem

L. V. Buchok

M. V. Lomonosov Moscow State University
Full-text PDF (418 kB) Citations (3)
References:
Abstract: We use probabilistic methods to estimate the cardinality of a set $S$ in a Euclidean space such that no three points of $S$ form a right or an obtuse angle. Let $a(n)$ be the cardinality of a maximal subset $S\subset\mathbb R^n$ with this property. We prove that
$$ a(n)\ge\frac23\biggl\lfloor\sqrt2\biggl(\frac2{\sqrt3}\biggr)^n\biggr\rfloor. $$
Keywords: Euclidean space, angle, set of points, Danzer–Grünbaum problem, Erdős–Füredi method.
Received: 29.12.2008
English version:
Mathematical Notes, 2010, Volume 87, Issue 4, Pages 489–496
DOI: https://doi.org/10.1134/S0001434610030272
Bibliographic databases:
Document Type: Article
UDC: 514.11
Language: Russian
Citation: L. V. Buchok, “Two New Approaches to Obtaining Estimates in the Danzer–Grünbaum Problem”, Mat. Zametki, 87:4 (2010), 519–527; Math. Notes, 87:4 (2010), 489–496
Citation in format AMSBIB
\Bibitem{Buc10}
\by L.~V.~Buchok
\paper Two New Approaches to Obtaining Estimates in the Danzer--Gr\"unbaum Problem
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 4
\pages 519--527
\mathnet{http://mi.mathnet.ru/mzm6610}
\crossref{https://doi.org/10.4213/mzm6610}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2762740}
\zmath{https://zbmath.org/?q=an:05791078}
\elib{https://elibrary.ru/item.asp?id=15315977}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 4
\pages 489--496
\crossref{https://doi.org/10.1134/S0001434610030272}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279034600027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953984057}
Linking options:
  • https://www.mathnet.ru/eng/mzm6610
  • https://doi.org/10.4213/mzm6610
  • https://www.mathnet.ru/eng/mzm/v87/i4/p519
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:419
    Full-text PDF :223
    References:45
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024