Abstract:
We introduce the notion of $\varepsilon$-unique bounded solution to the nonlinear differential equation $x'=f(x)-h(t)$, where $f\colon\mathbb R\to\mathbb R$ is a continuous function and $h(t)$ is an arbitrary continuous function bounded on $\mathbb R$. We derive necessary and sufficient conditions for the existence and $\varepsilon$-uniqueness of bounded solutions to this equation.
Citation:
V. E. Slyusarchuk, “Necessary and Sufficient Conditions for the Existence and $\varepsilon$-Uniqueness of Bounded Solutions of the Equation $x'=f(x)-h(t)$”, Mat. Zametki, 90:1 (2011), 137–142; Math. Notes, 90:1 (2011), 136–141
\Bibitem{Sly11}
\by V.~E.~Slyusarchuk
\paper Necessary and Sufficient Conditions for the Existence and $\varepsilon$-Uniqueness of Bounded Solutions of the Equation $x'=f(x)-h(t)$
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 1
\pages 137--142
\mathnet{http://mi.mathnet.ru/mzm6570}
\crossref{https://doi.org/10.4213/mzm6570}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2908174}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 1
\pages 136--141
\crossref{https://doi.org/10.1134/S0001434611070133}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294363500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052101200}
Linking options:
https://www.mathnet.ru/eng/mzm6570
https://doi.org/10.4213/mzm6570
https://www.mathnet.ru/eng/mzm/v90/i1/p137
This publication is cited in the following 1 articles:
Slyusarchuk V.Yu., “Conditions of Solvability for Nonlinear Differential Equations with Perturbations of the Solutions in the Space of Functions Bounded on the Axis”, Ukr. Math. J., 68:9 (2017), 1481–1493