Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 90, Issue 1, Pages 137–142
DOI: https://doi.org/10.4213/mzm6570
(Mi mzm6570)
 

This article is cited in 1 scientific paper (total in 1 paper)

Necessary and Sufficient Conditions for the Existence and $\varepsilon$-Uniqueness of Bounded Solutions of the Equation $x'=f(x)-h(t)$

V. E. Slyusarchuk

Ukranian State Academy of Water Economy
Full-text PDF (467 kB) Citations (1)
References:
Abstract: We introduce the notion of $\varepsilon$-unique bounded solution to the nonlinear differential equation $x'=f(x)-h(t)$, where $f\colon\mathbb R\to\mathbb R$ is a continuous function and $h(t)$ is an arbitrary continuous function bounded on $\mathbb R$. We derive necessary and sufficient conditions for the existence and $\varepsilon$-uniqueness of bounded solutions to this equation.
Keywords: nonlinear differential equation, bounded solution, $\varepsilon$-uniqueness, Banach space.
Received: 15.08.2008
English version:
Mathematical Notes, 2011, Volume 90, Issue 1, Pages 136–141
DOI: https://doi.org/10.1134/S0001434611070133
Bibliographic databases:
Document Type: Article
UDC: 517.988.63
Language: Russian
Citation: V. E. Slyusarchuk, “Necessary and Sufficient Conditions for the Existence and $\varepsilon$-Uniqueness of Bounded Solutions of the Equation $x'=f(x)-h(t)$”, Mat. Zametki, 90:1 (2011), 137–142; Math. Notes, 90:1 (2011), 136–141
Citation in format AMSBIB
\Bibitem{Sly11}
\by V.~E.~Slyusarchuk
\paper Necessary and Sufficient Conditions for the Existence and $\varepsilon$-Uniqueness of Bounded Solutions of the Equation $x'=f(x)-h(t)$
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 1
\pages 137--142
\mathnet{http://mi.mathnet.ru/mzm6570}
\crossref{https://doi.org/10.4213/mzm6570}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2908174}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 1
\pages 136--141
\crossref{https://doi.org/10.1134/S0001434611070133}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294363500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052101200}
Linking options:
  • https://www.mathnet.ru/eng/mzm6570
  • https://doi.org/10.4213/mzm6570
  • https://www.mathnet.ru/eng/mzm/v90/i1/p137
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024