Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 1, Pages 60–68
DOI: https://doi.org/10.4213/mzm6380
(Mi mzm6380)
 

Poincaré Series of Divisorial Filtration Corresponding to a Curve with One Place at Infinity

A. Yu. Buriyak

M. V. Lomonosov Moscow State University
References:
Abstract: The exceptional divisor component of the projective plane modified by a sequence of blow-ups determines filtration on the ring of polynomials in two variables. The set of such components determines the multi-index filtration on this ring. The Poincaré series of this filtration is calculated for some sets of components provided that the modification under study is the minimal resolution of a plane algebraic curve with one place at infinity.
Keywords: plane irreducible affine curve, multi-index filtration, exceptional divisor, Poincaré series, irreducible divisor, dual graph, complex projective plane.
Received: 21.08.2008
English version:
Mathematical Notes, 2010, Volume 87, Issue 1, Pages 52–58
DOI: https://doi.org/10.1134/S0001434610010074
Bibliographic databases:
UDC: 515.162
Language: Russian
Citation: A. Yu. Buriyak, “Poincaré Series of Divisorial Filtration Corresponding to a Curve with One Place at Infinity”, Mat. Zametki, 87:1 (2010), 60–68; Math. Notes, 87:1 (2010), 52–58
Citation in format AMSBIB
\Bibitem{Bur10}
\by A.~Yu.~Buriyak
\paper Poincar\'e Series of Divisorial Filtration Corresponding to a Curve with One Place at Infinity
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 1
\pages 60--68
\mathnet{http://mi.mathnet.ru/mzm6380}
\crossref{https://doi.org/10.4213/mzm6380}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2730383}
\zmath{https://zbmath.org/?q=an:1195.14039}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 1
\pages 52--58
\crossref{https://doi.org/10.1134/S0001434610010074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276064800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950007764}
Linking options:
  • https://www.mathnet.ru/eng/mzm6380
  • https://doi.org/10.4213/mzm6380
  • https://www.mathnet.ru/eng/mzm/v87/i1/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:399
    Full-text PDF :175
    References:60
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024