Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 5, Pages 772–780
DOI: https://doi.org/10.4213/mzm6360
(Mi mzm6360)
 

This article is cited in 52 scientific papers (total in 52 papers)

Nontrivial Solutions of a Higher-Order Rational Difference Equation

S. Stević

Mathematical Institute, Serbian Academy of Sciences and Arts
References:
Abstract: We prove that, for every $k\in\mathbb N$, the following generalization of the Putnam difference equation
$$ x_{n+1}=\frac{x_n+x_{n-1}+\dots+x_{n-(k-1)}+x_{n-k}x_{n-(k+1)}} {x_nx_{n-1}+x_{n-2}+\dots+x_{n-(k+1)}}\,,\qquad n\in\mathbb N_0, $$
has a positive solution with the following asymptotics
$$ x_n=1+(k+1)e^{-\lambda^n}+(k+1)e^{-c\lambda^n}+o(e^{-c\lambda^n}) $$
for some $c>1$ depending on $k$, and where $\lambda$ is the root of the polynomial $P(\lambda)=\lambda^{k+2}-\lambda-1$ belonging to the interval $(1,2)$. Using this result, we prove that the equation has a positive solution which is not eventually equal to $1$. Also, for the case $k=1$, we find all positive eventually equal to unity solutions to the equation.
Keywords: difference equation, nonlinear solution, asymptotic, Putnam difference equation.
Received: 29.10.2006
English version:
Mathematical Notes, 2008, Volume 84, Issue 5, Pages 718–724
DOI: https://doi.org/10.1134/S0001434608110138
Bibliographic databases:
UDC: 512.628.4
Language: Russian
Citation: S. Stević, “Nontrivial Solutions of a Higher-Order Rational Difference Equation”, Mat. Zametki, 84:5 (2008), 772–780; Math. Notes, 84:5 (2008), 718–724
Citation in format AMSBIB
\Bibitem{Ste08}
\by S.~Stevi{\'c}
\paper Nontrivial Solutions of a Higher-Order Rational Difference Equation
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 5
\pages 772--780
\mathnet{http://mi.mathnet.ru/mzm6360}
\crossref{https://doi.org/10.4213/mzm6360}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2500643}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 5
\pages 718--724
\crossref{https://doi.org/10.1134/S0001434608110138}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262855600013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59749101416}
Linking options:
  • https://www.mathnet.ru/eng/mzm6360
  • https://doi.org/10.4213/mzm6360
  • https://www.mathnet.ru/eng/mzm/v84/i5/p772
  • This publication is cited in the following 52 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025