Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 5, Pages 755–762
DOI: https://doi.org/10.4213/mzm6359
(Mi mzm6359)
 

On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions

A. V. Pokrovskii

Institute of Mathematics, Ukrainian National Academy of Sciences
References:
Abstract: For a continuous $2\pi$-periodic real-valued function $K(t)$, whose amplitudes decrease as a geometric progression with a denominator $q\in(0,1)$ starting from a given number $n\in\mathbb{N}$, we find sharp upper bounds for $q$ ensuring that $K(t)$ satisfies the Nagy condition $N_n^*$.
Keywords: best approximation, $2\pi$-periodic analytic function, convolution class, trigonometric polynomial, geometric progression, Nagy condition.
Received: 22.05.2007
English version:
Mathematical Notes, 2008, Volume 84, Issue 5, Pages 703–709
DOI: https://doi.org/10.1134/S0001434608110114
Bibliographic databases:
UDC: 517.51
Language: Russian
Citation: A. V. Pokrovskii, “On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions”, Mat. Zametki, 84:5 (2008), 755–762; Math. Notes, 84:5 (2008), 703–709
Citation in format AMSBIB
\Bibitem{Pok08}
\by A.~V.~Pokrovskii
\paper On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 5
\pages 755--762
\mathnet{http://mi.mathnet.ru/mzm6359}
\crossref{https://doi.org/10.4213/mzm6359}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2500641}
\elib{https://elibrary.ru/item.asp?id=13588326}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 5
\pages 703--709
\crossref{https://doi.org/10.1134/S0001434608110114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262855600011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59749099286}
Linking options:
  • https://www.mathnet.ru/eng/mzm6359
  • https://doi.org/10.4213/mzm6359
  • https://www.mathnet.ru/eng/mzm/v84/i5/p755
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025