|
On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions
A. V. Pokrovskii Institute of Mathematics, Ukrainian National Academy of Sciences
Abstract:
For a continuous $2\pi$-periodic real-valued function $K(t)$, whose amplitudes decrease as a geometric progression with a denominator $q\in(0,1)$ starting from a given number $n\in\mathbb{N}$, we find sharp upper bounds for $q$ ensuring that $K(t)$ satisfies the Nagy condition $N_n^*$.
Keywords:
best approximation, $2\pi$-periodic analytic function, convolution class, trigonometric polynomial, geometric progression, Nagy condition.
Received: 22.05.2007
Citation:
A. V. Pokrovskii, “On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions”, Mat. Zametki, 84:5 (2008), 755–762; Math. Notes, 84:5 (2008), 703–709
Linking options:
https://www.mathnet.ru/eng/mzm6359https://doi.org/10.4213/mzm6359 https://www.mathnet.ru/eng/mzm/v84/i5/p755
|
|