Abstract:
We introduce the notion of normal torsion of a surface at a point along a given direction in a Riemannian space. We give a complete classification of surfaces in four-spaces of constant curvature having zero normal torsion.
Citation:
V. T. Fomenko, “Classification of Two-Dimensional Surfaces with Zero Normal Torsion in Four-Dimensional Spaces of Constant Curvature”, Mat. Zametki, 75:5 (2004), 744–756; Math. Notes, 75:5 (2004), 690–701
\Bibitem{Fom04}
\by V.~T.~Fomenko
\paper Classification of Two-Dimensional Surfaces with Zero Normal Torsion in Four-Dimensional Spaces of Constant Curvature
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 5
\pages 744--756
\mathnet{http://mi.mathnet.ru/mzm60}
\crossref{https://doi.org/10.4213/mzm60}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2085737}
\zmath{https://zbmath.org/?q=an:1076.53005}
\elib{https://elibrary.ru/item.asp?id=6618277}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 5
\pages 690--701
\crossref{https://doi.org/10.1023/B:MATN.0000030977.00673.55}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222492400011}
Linking options:
https://www.mathnet.ru/eng/mzm60
https://doi.org/10.4213/mzm60
https://www.mathnet.ru/eng/mzm/v75/i5/p744
This publication is cited in the following 9 articles:
Abdigappar Narmanov, Eldor Rajabov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040008
I. I. Bodrenko, “Conditions for the Parallelism of the Normal Curvature Tensor of Submanifolds”, J Math Sci, 276:6 (2023), 695
Abdigappar NARMANOV, Eldor RAJABOV, “The Geometry of Vector Fields and Two Dimensional Heat Equation”, International Electronic Journal of Geometry, 16:1 (2023), 73
Abdigappar Narmanov, Bekzod Diyarov, V. Pukhkal, S. Uvarova, “On the geometry of Hamiltonian vector fields”, E3S Web of Conf., 458 (2023), 09013
I. I. Bodrenko, “On Submanifolds with a Parallel Normal Vector Field in Spaces of Constant Curvature”, J Math Sci, 263:3 (2022), 351
A Ya Narmanov, E O Rajabov, “Vector fields and differential equations”, J. Phys.: Conf. Ser., 2388:1 (2022), 012041
I. I. Bodrenko, “Ob usloviyakh parallelnosti tenzora normalnoi krivizny podmnogoobrazii”, Trudy mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya»,
posvyaschennoi 100-letiyu so dnya rozhdeniya professora Vyacheslava Timofeevicha Bazyleva.
Moskva, 22–25 aprelya 2019 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 181, VINITI RAN, M., 2020, 3–8
I. I. Bodrenko, “O podmnogoobraziyakh s parallelnym normalnym vektornym polem v prostranstvakh postoyannoi krivizny”, Materialy mezhdunarodnoi konferentsii “Geometricheskie metody v teorii upravleniya i matematicheskoi fizike”, posvyaschennoi 70-letiyu S.L. Atanasyana, 70-letiyu I.S. Krasilschika, 70-letiyu A.V. Samokhina, 80-letiyu V.T. Fomenko. Ryazanskii gosudarstvennyi universitet im. S.A. Esenina, Ryazan, 25–28 sentyabrya 2018 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 169, VINITI RAN, M., 2019, 3–10
V. G. Sharmin, D. V. Sharmin, “Svoistva sfericheskogo obraza prostranstvennoi polosy v E4”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2018, no. 1, 36–45