Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 1, Pages 142–150
DOI: https://doi.org/10.4213/mzm6
(Mi mzm6)
 

This article is cited in 1 scientific paper (total in 1 paper)

Complexity of Sets Obtained as Values of Propositional Formulas

A. V. Chernov

M. V. Lomonosov Moscow State University
Full-text PDF (206 kB) Citations (1)
References:
Abstract: Interpretation of logical connectives as operations on sets of binary strings is considered; the complexity of a set is defined as the minimum of Kolmogorov complexities of its elements. It is readily seen that the complexity of a set obtained by the application of logical operations does not exceed the complexity of the conjunction of their arguments (up to an additive constant). In this paper, it is shown that the complexity of a set obtained by a formula $\Phi$ is small (bounded by a constant) if $\Phi$ is deducible in the logic of weak excluded middle, and attains the specified upper bound otherwise.
Received: 28.05.2003
English version:
Mathematical Notes, 2004, Volume 75, Issue 1, Pages 131–139
DOI: https://doi.org/10.1023/B:MATN.0000015028.10892.68
Bibliographic databases:
UDC: 510.52
Language: Russian
Citation: A. V. Chernov, “Complexity of Sets Obtained as Values of Propositional Formulas”, Mat. Zametki, 75:1 (2004), 142–150; Math. Notes, 75:1 (2004), 131–139
Citation in format AMSBIB
\Bibitem{Che04}
\by A.~V.~Chernov
\paper Complexity of Sets Obtained as Values of Propositional Formulas
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 1
\pages 142--150
\mathnet{http://mi.mathnet.ru/mzm6}
\crossref{https://doi.org/10.4213/mzm6}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2054037}
\zmath{https://zbmath.org/?q=an:1114.03004}
\elib{https://elibrary.ru/item.asp?id=14466486}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 1
\pages 131--139
\crossref{https://doi.org/10.1023/B:MATN.0000015028.10892.68}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220006100013}
Linking options:
  • https://www.mathnet.ru/eng/mzm6
  • https://doi.org/10.4213/mzm6
  • https://www.mathnet.ru/eng/mzm/v75/i1/p142
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :176
    References:34
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024