Citation:
I. M. Karabash, A. S. Kostenko, “Similarity of sgnx(−d2dx2+cδ)sgnx(−d2dx2+cδ) Type Operators to Normal and Self-adjoint Operators”, Mat. Zametki, 74:1 (2003), 134–139; Math. Notes, 74:1 (2003), 127–131
\Bibitem{KarKos03}
\by I.~M.~Karabash, A.~S.~Kostenko
\paper Similarity of $\operatorname{sgn}x\bigl(-\frac{d^2}{dx^2}+c\delta\bigr)$ Type Operators to Normal and Self-adjoint Operators
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 1
\pages 134--139
\mathnet{http://mi.mathnet.ru/mzm585}
\crossref{https://doi.org/10.4213/mzm585}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2010685}
\zmath{https://zbmath.org/?q=an:1057.47050}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 1
\pages 127--131
\crossref{https://doi.org/10.1023/A:1025031519433}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185172900015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347755252}
Linking options:
https://www.mathnet.ru/eng/mzm585
https://doi.org/10.4213/mzm585
https://www.mathnet.ru/eng/mzm/v74/i1/p134
This publication is cited in the following 13 articles:
Branko Ćurgus, Volodymyr Derkach, Carsten Trunk, “Indefinite Sturm–Liouville Operators in Polar Form”, Integr. Equ. Oper. Theory, 96:1 (2024)
Aharonov Ya., Behrndt J., Colombo F., Schlosser P., “Green'S Function For the Schrodinger Equation With a Generalized Point Interaction and Stability of Superoscillations”, J. Differ. Equ., 277 (2021), 153–190
Gimaltdinova A., “The Dirichlet Problem For An Equation of Mixed Type With Two Internal Lines of Type Change”, Lobachevskii J. Math., 41:11, SI (2020), 2155–2167
Krejcirik D. Siegl P. Zelezny J., “On the Similarity of Sturm-Liouville Operators with Non-Hermitian Boundary Conditions to Self-Adjoint and Normal Operators”, Complex Anal. Oper. Theory, 8:1 (2014), 255–281
Karabash I.M., “A Functional Model, Eigenvalues, and Finite Singular Critical Points for Indefinite Sturm-Liouville Operators”, Topics in Operator Theory, Vol 2: Systems and Mathematical Physics, Operator Theory Advances and Applications, 203, eds. Ball J., Bolotnikov V., Helton J., Rodman L., Spitkovsky I., Birkhauser Verlag Ag, 2010, 247–287
Behrndt J., “On the spectral theory of singular indefinite Sturm-Liouville operators”, J. Math. Anal. Appl., 334:2 (2007), 1439–1449
Behrndt J., Trunk C., “On the negative squares of indefinite Sturm-Liouville operators”, J. Differential Equations, 238:2 (2007), 491–519
Karabash I. Kostenko A., “Spectral Analysis of Differential Operators with Indefinite Weights and a Local Point Interaction”, Operator Theory in Inner Product Spaces, Operator Theory : Advances and Applications, 175, ed. Forster KH. Jones P. Langer H. Trunk C., Birkhauser Verlag Ag, 2007, 169–191
A. S. Kostenko, “Similarity of Some
JJ-Nonnegative Operators
to Self-Adjoint Operators”, Math. Notes, 80:1 (2006), 131–135
Kostenko A.S., “Spectral Analysis of Some Indefinite Sturm-Liouville Operators”, Operator Theory 20, Proceedings, ed. Davidson K. Gaspar D. Stratila S. Timotin D. Vasilescu F., Theta Foundation, 2006, 131–141
Albeverio S., Kuzhel S., “One-dimensional Schrödinger operators with P-symmetric zero-range potentials”, J. Phys. A, 38:22 (2005), 4975–4988
A. S. Kostenko, “Similarity of Indefinite Sturm–Liouville Operators with Singular Potential to a Self-Adjoint Operator”, Math. Notes, 78:1 (2005), 134–139