Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 3, Pages 472–474
DOI: https://doi.org/10.4213/mzm5544
(Mi mzm5544)
 

This article is cited in 8 scientific papers (total in 8 papers)

Brief Communications

On the Freiman Theorem in Finite Fields

S. V. Konyagin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (302 kB) Citations (8)
References:
Keywords: Freiman theorem, set addition, finite field, Abelian group, Hamming metric, arithmetic progression, doubling constant.
Received: 09.01.2008
English version:
Mathematical Notes, 2008, Volume 84, Issue 3, Pages 435–438
DOI: https://doi.org/10.1134/S0001434608090137
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Konyagin, “On the Freiman Theorem in Finite Fields”, Mat. Zametki, 84:3 (2008), 472–474; Math. Notes, 84:3 (2008), 435–438
Citation in format AMSBIB
\Bibitem{Kon08}
\by S.~V.~Konyagin
\paper On the Freiman Theorem in Finite Fields
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 3
\pages 472--474
\mathnet{http://mi.mathnet.ru/mzm5544}
\crossref{https://doi.org/10.4213/mzm5544}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2473762}
\zmath{https://zbmath.org/?q=an:1176.11009}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 3
\pages 435--438
\crossref{https://doi.org/10.1134/S0001434608090137}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260516700013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55149109960}
Linking options:
  • https://www.mathnet.ru/eng/mzm5544
  • https://doi.org/10.4213/mzm5544
  • https://www.mathnet.ru/eng/mzm/v84/i3/p472
  • This publication is cited in the following 8 articles:
    1. Ning Xie, Shuai Xu, Yekun Xu, “A generalization of a theorem of Rothschild and van Lint”, Theoretical Computer Science, 955 (2023), 113802  crossref
    2. Ning Xie, Shuai Xu, Yekun Xu, Lecture Notes in Computer Science, 12730, Computer Science – Theory and Applications, 2021, 460  crossref
    3. I. D. Shkredov, “Structure theorems in additive combinatorics”, Russian Math. Surveys, 70:1 (2015), 113–163  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Even-Zohar Ch., Lovett Sh., “The Freiman-Ruzsa Theorem Over Finite Fields”, J. Comb. Theory Ser. A, 125 (2014), 333–341  crossref  mathscinet  zmath  isi  scopus
    5. Even-Zohar Ch., Lev V.F., “Small Asymmetric Sumsets in Elementary Abelian 2-Groups”, Discrete Math., 313:5 (2013), 689–692  crossref  mathscinet  zmath  isi  elib  scopus
    6. Sanders T., “The Structure Theory of Set Addition Revisited”, Bull. Amer. Math. Soc., 50:1 (2013), 93–127  crossref  mathscinet  zmath  isi  elib  scopus
    7. Emmanuel Breuillard, Ben Green, Terence Tao, Bolyai Society Mathematical Studies, 25, Erdős Centennial, 2013, 129  crossref
    8. Even-Zohar Ch., “On sums of generating sets in $\mathbb Z^n_2$”, Comb. Probab. Comput., 21:6 (2012), 916–941  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:722
    Full-text PDF :255
    References:82
    First page:26
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025