Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 5, Pages 758–797
DOI: https://doi.org/10.4213/mzm539
(Mi mzm539)
 

This article is cited in 145 scientific papers (total in 145 papers)

Mathematical Surveys

Idempotent Functional Analysis: An Algebraic Approach

G. L. Litvinova, V. P. Maslovb, G. B. Shpiza

a International Center "Sophus Lie"
b M. V. Lomonosov Moscow State University, Faculty of Physics
References:
Abstract: This paper is devoted to Idempotent Functional Analysis, which is an “abstract” version of Idempotent Analysis developed by V. P. Maslov and his collaborators. We give a brief survey of the basic ideas of Idempotent Analysis. The correspondence between concepts and theorems of traditional Functional Analysis and its idempotent version is discussed in the spirit of N. Bohr's correspondence principle in quantum theory. We present an algebraic approach to Idempotent Functional Analysis. Basic notions and results are formulated in algebraic terms; the essential point is that the operation of idempotent addition can be defined for arbitrary infinite sets of summands. We study idempotent analogs of the basic principles of linear functional analysis and results on the general form of a linear functional and scalar products in idempotent spaces.
Received: 17.05.2000
English version:
Mathematical Notes, 2001, Volume 69, Issue 5, Pages 696–729
DOI: https://doi.org/10.1023/A:1010266012029
Bibliographic databases:
Document Type: Article
UDC: 519
Language: Russian
Citation: G. L. Litvinov, V. P. Maslov, G. B. Shpiz, “Idempotent Functional Analysis: An Algebraic Approach”, Mat. Zametki, 69:5 (2001), 758–797; Math. Notes, 69:5 (2001), 696–729
Citation in format AMSBIB
\Bibitem{LitMasShp01}
\by G.~L.~Litvinov, V.~P.~Maslov, G.~B.~Shpiz
\paper Idempotent Functional Analysis: An Algebraic Approach
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 5
\pages 758--797
\mathnet{http://mi.mathnet.ru/mzm539}
\crossref{https://doi.org/10.4213/mzm539}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846814}
\zmath{https://zbmath.org/?q=an:1017.46034}
\elib{https://elibrary.ru/item.asp?id=13682001}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 5
\pages 696--729
\crossref{https://doi.org/10.1023/A:1010266012029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169913100012}
Linking options:
  • https://www.mathnet.ru/eng/mzm539
  • https://doi.org/10.4213/mzm539
  • https://www.mathnet.ru/eng/mzm/v69/i5/p758
  • This publication is cited in the following 145 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1667
    Full-text PDF :913
    References:121
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024