Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 5, Pages 656–665
DOI: https://doi.org/10.4213/mzm529
(Mi mzm529)
 

This article is cited in 19 scientific papers (total in 19 papers)

Widths of the Besov Classes Brp,θ(Td)

È. M. Galeev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In this paper we obtain estimates of the orders of Kolmogorov widths of the Besov classes Brp,θ(Td) of periodic functions of several variables with dominant mixed derivative (defined in the sense of Weyl) in the space Lq, rRd, 1<p,q<, 0<θ. The proposed approach to calculating widths can also be used for finding the widths of the Sobolev classes Wrp(Td) (by embedding them in the Besov classes Brp,θ(Td)) as well as for calculating some other widths (such as Alexandroff, linear, projective, and orthoprojective widths).
Received: 23.12.1997
Revised: 03.03.2000
English version:
Mathematical Notes, 2001, Volume 69, Issue 5, Pages 605–613
DOI: https://doi.org/10.1023/A:1010245407486
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: È. M. Galeev, “Widths of the Besov Classes Brp,θ(Td)”, Mat. Zametki, 69:5 (2001), 656–665; Math. Notes, 69:5 (2001), 605–613
Citation in format AMSBIB
\Bibitem{Gal01}
\by \`E.~M.~Galeev
\paper Widths of the Besov Classes $B_{p,\theta}^r(\mathbb T^d)$
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 5
\pages 656--665
\mathnet{http://mi.mathnet.ru/mzm529}
\crossref{https://doi.org/10.4213/mzm529}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846804}
\zmath{https://zbmath.org/?q=an:1012.46035}
\elib{https://elibrary.ru/item.asp?id=5022564}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 5
\pages 605--613
\crossref{https://doi.org/10.1023/A:1010245407486}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169913100002}
Linking options:
  • https://www.mathnet.ru/eng/mzm529
  • https://doi.org/10.4213/mzm529
  • https://www.mathnet.ru/eng/mzm/v69/i5/p656
  • This publication is cited in the following 19 articles:
    1. A. S. Romanyuk, S. Ya. Yanchenko, “Kolmogorov Widths of the Nikol'skii–Besov Classes of Periodic Functions of Many Variables in the Space of Quasicontinuous Functions”, Ukr Math J, 74:2 (2022), 251  crossref
    2. A. S. Romanyuk, S. Ya. Yanchenko, “Kolmogorovskі poperechniki klasіv Nіkolskogo – Bєsova perіodichnikh funktsіi bagatokh zmіnnikh u prostorі kvazіneperervnikh funktsіi”, Ukr. Mat. Zhurn., 74:2 (2022), 220  crossref
    3. Yuri V. Malykhin, “Kolmogorov Widths of the Besov Classes B11,θ and Products of Octahedra”, Proc. Steklov Inst. Math., 312 (2021), 215–225  mathnet  crossref  crossref  mathscinet  isi  elib
    4. Van Kien Nguyen, “Gelfand Numbers of Embeddings of Mixed Besov Spaces”, J. Complex., 41 (2017), 35–57  crossref  mathscinet  zmath  isi  scopus  scopus
    5. S. N. Kudryavtsev, “An analogue of the Littlewood–Paley theorem for orthoprojectors onto wavelet subspaces”, Izv. Math., 80:3 (2016), 557–601  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. G. A. Akishev, “Estimates for Kolmogorov widths of the Nikol'skii — Besov — Amanov classes in the Lorentz space”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 1–12  mathnet  crossref  mathscinet  isi  elib
    7. Van Kien Nguyen, Sickel W., “Weyl Numbers of Embeddings of Tensor Product Besov Spaces”, J. Approx. Theory, 200 (2015), 170–220  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Van Kien Nguyen, “Bernstein Numbers of Embeddings of Isotropic and Dominating Mixed Besov Spaces”, Math. Nachr., 288:14-15 (2015), 1694–1717  crossref  mathscinet  zmath  isi  scopus  scopus
    9. S. A. Stasyuk, “Priblizhenie summami Fure i kolmogorovskie poperechniki klassov MBΩp,θ periodicheskikh funktsii neskolkikh peremennykh”, Tr. IMM UrO RAN, 20, no. 1, 2014, 247–257  mathnet  mathscinet  elib
    10. S. N. Kudryavtsev, “A Littlewood–Paley type theorem and a corollary”, Izv. Math., 77:6 (2013), 1155–1194  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Hansen M., Sickel W., “Best M-Term Approximation and Sobolev-Besov Spaces of Dominating Mixed Smoothness-the Case of Compact Embeddings”, Constr. Approx., 36:1 (2012), 1–51  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    12. Wang H., “Widths Between the Anisotropic Spaces and the Spaces of Functions with Mixed Smoothness”, J. Approx. Theory, 164:3 (2012), 406–430  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    13. Kudryavtsev S.N., “Generalized Haar Series and their Applications”, Anal. Math., 37:2 (2011), 103–150  crossref  mathscinet  zmath  isi  scopus  scopus
    14. Sickel W., Ullrich T., “Spline Interpolation on Sparse Grids”, Appl. Anal., 90:3-4, SI (2011), 337–383  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    15. Bazarkhanov D.B., “Estimates for Widths of Classes of Periodic Multivariable Functions”, Dokl. Math., 83:1 (2011), 90–92  crossref  mathscinet  zmath  isi  elib  scopus
    16. D. B. Bazarkhanov, “Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I”, Proc. Steklov Inst. Math., 269 (2010), 2–24  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    17. D. B. Bazarkhanov, “Estimates for the widths of classes of periodic functions of several variables – I”, Eurasian Math. J., 1:3 (2010), 11–26  mathnet  mathscinet  zmath
    18. Bazarkhanov, DB, “Estimates for certain approximation characteristics of Nikol'skii-Besov spaces with generalized mixed smoothness”, Doklady Mathematics, 79:3 (2009), 305  crossref  mathscinet  zmath  isi  scopus  scopus
    19. A. S. Romanyuk, “Kolmogorov and trigonometric widths of the Besov classes Brp,θ of multivariate periodic functions”, Sb. Math., 197:1 (2006), 69–93  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:661
    Full-text PDF :294
    References:79
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025