Abstract:
In this paper we obtain estimates of the orders of Kolmogorov widths of the Besov classes Brp,θ(Td) of periodic functions of several variables with dominant mixed derivative (defined in the sense of Weyl) in the space Lq, r∈Rd, 1<p,q<∞, 0<θ⩽∞. The proposed approach to calculating widths can also be used for finding the widths of the Sobolev classes Wrp(Td) (by embedding them in the Besov classes Brp,θ(Td)) as well as for calculating some other widths (such as Alexandroff, linear, projective, and orthoprojective widths).
This publication is cited in the following 19 articles:
A. S. Romanyuk, S. Ya. Yanchenko, “Kolmogorov Widths of the Nikol'skii–Besov Classes of Periodic Functions of Many Variables in the Space of Quasicontinuous Functions”, Ukr Math J, 74:2 (2022), 251
A. S. Romanyuk, S. Ya. Yanchenko, “Kolmogorovskі poperechniki klasіv Nіkolskogo – Bєsova perіodichnikh funktsіi bagatokh zmіnnikh u prostorі kvazіneperervnikh funktsіi”, Ukr. Mat. Zhurn., 74:2 (2022), 220
Yuri V. Malykhin, “Kolmogorov Widths of the Besov Classes B11,θ and Products of Octahedra”, Proc. Steklov Inst. Math., 312 (2021), 215–225
Van Kien Nguyen, “Gelfand Numbers of Embeddings of Mixed Besov Spaces”, J. Complex., 41 (2017), 35–57
S. N. Kudryavtsev, “An analogue of the Littlewood–Paley theorem for orthoprojectors onto wavelet subspaces”, Izv. Math., 80:3 (2016), 557–601
G. A. Akishev, “Estimates for Kolmogorov widths of the Nikol'skii — Besov — Amanov classes in the Lorentz space”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 1–12
Van Kien Nguyen, Sickel W., “Weyl Numbers of Embeddings of Tensor Product Besov Spaces”, J. Approx. Theory, 200 (2015), 170–220
Van Kien Nguyen, “Bernstein Numbers of Embeddings of Isotropic and Dominating Mixed Besov Spaces”, Math. Nachr., 288:14-15 (2015), 1694–1717
S. A. Stasyuk, “Priblizhenie summami Fure i kolmogorovskie poperechniki klassov MBΩp,θ periodicheskikh funktsii neskolkikh peremennykh”, Tr. IMM UrO RAN, 20, no. 1, 2014, 247–257
S. N. Kudryavtsev, “A Littlewood–Paley type theorem and a corollary”, Izv. Math., 77:6 (2013), 1155–1194
Hansen M., Sickel W., “Best M-Term Approximation and Sobolev-Besov Spaces of Dominating Mixed Smoothness-the Case of Compact Embeddings”, Constr. Approx., 36:1 (2012), 1–51
Wang H., “Widths Between the Anisotropic Spaces and the Spaces of Functions with Mixed Smoothness”, J. Approx. Theory, 164:3 (2012), 406–430
Kudryavtsev S.N., “Generalized Haar Series and their Applications”, Anal. Math., 37:2 (2011), 103–150
Sickel W., Ullrich T., “Spline Interpolation on Sparse Grids”, Appl. Anal., 90:3-4, SI (2011), 337–383
Bazarkhanov D.B., “Estimates for Widths of Classes of Periodic Multivariable Functions”, Dokl. Math., 83:1 (2011), 90–92
D. B. Bazarkhanov, “Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I”, Proc. Steklov Inst. Math., 269 (2010), 2–24
D. B. Bazarkhanov, “Estimates for the widths of classes of periodic functions of several variables – I”, Eurasian Math. J., 1:3 (2010), 11–26
Bazarkhanov, DB, “Estimates for certain approximation characteristics of Nikol'skii-Besov spaces with generalized mixed smoothness”, Doklady Mathematics, 79:3 (2009), 305
A. S. Romanyuk, “Kolmogorov and trigonometric widths of the Besov classes Brp,θ of multivariate periodic functions”, Sb. Math., 197:1 (2006), 69–93