Abstract:
We obtain a description of the maximum and minimum values of the remainder in the problem of the distribution of fractional parts. The exact maximum and minimum values of the remainder are calculated; they are independent of the length of the bounded remainder interval. It is shown that these values can be computed in O(m) operations. The remainder is described as a function of the argument α.
Keywords:
distribution of fractional parts, maximum and minimum values of the remainder, bounded remainder set.
Citation:
V. V. Krasil'shchikov, A. V. Shutov, “Description and Exact Maximum and Minimum Values of the Remainder in the Problem of the Distribution of Fractional Parts”, Mat. Zametki, 89:1 (2011), 43–52; Math. Notes, 89:1 (2011), 59–67
\Bibitem{KraShu11}
\by V.~V.~Krasil'shchikov, A.~V.~Shutov
\paper Description and Exact Maximum and Minimum Values of the Remainder in the Problem of the Distribution of Fractional Parts
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 1
\pages 43--52
\mathnet{http://mi.mathnet.ru/mzm5266}
\crossref{https://doi.org/10.4213/mzm5266}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841492}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 1
\pages 59--67
\crossref{https://doi.org/10.1134/S0001434611010068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288653100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952373566}
Linking options:
https://www.mathnet.ru/eng/mzm5266
https://doi.org/10.4213/mzm5266
https://www.mathnet.ru/eng/mzm/v89/i1/p43
This publication is cited in the following 12 articles:
A. V. Shutov, “Local Discrepancies in the Problem of the Distribution of the Sequence $\{k\alpha\}$”, Math. Notes, 109:3 (2021), 473–482
A. V. Shutov, “Obobschennye razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Chebyshevskii sb., 20:3 (2019), 372–389
A. V. Shutov, “Nonautonomous bounded remainder sets”, Russian Mathematics, 62:12 (2018), 81–87
A. V. Shutov, “Local discrepancies in the problem linear function fractional parts distribution”, Russian Math. (Iz. VUZ), 61:2 (2017), 74–82
A. A. Zhukova, A. V. Shutov, “O funktsii raspredeleniya ostatochnogo chlena na mnozhestvakh ogranichennogo ostatka”, Chebyshevskii sb., 17:1 (2016), 90–107
A. A. Abrosimova, “$\mathrm{BR}$-mnozhestva”, Chebyshevskii sb., 16:2 (2015), 8–22
D. V. Kuznetsova, A. V. Shutov, “Exchanged Toric Tilings, Rauzy Substitution, and Bounded Remainder Sets”, Math. Notes, 98:6 (2015), 932–948
A. V. Shutov, “O skorosti dostizheniya tochnykh granits ostatochnogo chlena v probleme Gekke–Kestena”, Chebyshevskii sb., 14:2 (2013), 173–179
V. V. Krasil'shchikov, A. V. Shutov, “Distribution of points of one-dimensional quasilattices with respect to a variable module”, Russian Math. (Iz. VUZ), 56:3 (2012), 14–19
A. V. Shutov, “Problema Gekke–Kestena dlya neskolkikh intervalov”, Chebyshevskii sb., 12:1 (2011), 172–177
A. V. Shutov, “Dvumernaya problema Gekke–Kestena”, Chebyshevskii sb., 12:2 (2011), 151–162