Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 5, Pages 782–787
DOI: https://doi.org/10.4213/mzm5260
(Mi mzm5260)
 

This article is cited in 7 scientific papers (total in 7 papers)

A System of Recurrence Relations for Rational Approximations of the Euler Constant

D. N. Tulyakov

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
Full-text PDF (410 kB) Citations (7)
References:
Abstract: We obtain the system of recurrence relations for rational approximations of the Euler constant generalizing the recurrence relations obtained earlier by Aptekarev with coauthors. The leading coefficient of the recurrence relations of this system is 1, which can be used to verify that the generated numbers are integers.
Keywords: Euler constant, rational approximation, multiple orthogonal polynomials, Rodrigues formula.
Received: 09.07.2008
Revised: 20.10.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 5, Pages 746–750
DOI: https://doi.org/10.1134/S0001434609050150
Bibliographic databases:
UDC: 517
Language: Russian
Citation: D. N. Tulyakov, “A System of Recurrence Relations for Rational Approximations of the Euler Constant”, Mat. Zametki, 85:5 (2009), 782–787; Math. Notes, 85:5 (2009), 746–750
Citation in format AMSBIB
\Bibitem{Tul09}
\by D.~N.~Tulyakov
\paper A System of Recurrence Relations for Rational Approximations of the Euler Constant
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 5
\pages 782--787
\mathnet{http://mi.mathnet.ru/mzm5260}
\crossref{https://doi.org/10.4213/mzm5260}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2572868}
\zmath{https://zbmath.org/?q=an:05628206}
\elib{https://elibrary.ru/item.asp?id=15294449}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 5
\pages 746--750
\crossref{https://doi.org/10.1134/S0001434609050150}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267684500015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949124779}
Linking options:
  • https://www.mathnet.ru/eng/mzm5260
  • https://doi.org/10.4213/mzm5260
  • https://www.mathnet.ru/eng/mzm/v85/i5/p782
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:605
    Full-text PDF :271
    References:66
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024