Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 2, Pages 179–200
DOI: https://doi.org/10.4213/mzm5256
(Mi mzm5256)
 

This article is cited in 28 scientific papers (total in 28 papers)

On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity

V. V. Zhikova, S. E. Pastukhovab

a Vladimir State Humanitarian University
b Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
References:
Abstract: We study a parabolic system of the form $\partial_tu=\operatorname{div}_xA(x,t,\nabla_xu)$ in a bounded cylinder $Q_T=\Omega\times(0,T)\subset\mathbb R^{n+1}_{x,t}$. Here the matrix function $A(x,t,\xi)$ is subject to the conditions of power growth in the variable $\xi$ and coercitivity with variable exponent $p(x,t)$. It is assumed that $p(x,t)$ has a logarithmic modulus of continuity and satisfies the estimate
$$ \frac{2n}{n+2}<\alpha\le p(x,t)\le\beta<\infty. $$
For the weak solution of the system, estimates of the higher integrability of the gradient are obtained inside the cylinder $Q_T$. The method of a solution is based on a localization of a special kind and a local variant (adapted for parabolic problems) of Gehring's lemma with variable exponent of integrability proved in the paper.
Keywords: parabolic system of variable order of nonlinearity, higher integrability for parabolic systems, Cacciopolli's inequality, Sobolev–Poincaré inequalities, Hölder's reverse inequality, Gehring's lemma, Lebesgue space, Sobolev–Orlicz space, Orlicz space.
Received: 22.06.2008
English version:
Mathematical Notes, 2010, Volume 87, Issue 2, Pages 169–188
DOI: https://doi.org/10.1134/S0001434610010256
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: V. V. Zhikov, S. E. Pastukhova, “On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity”, Mat. Zametki, 87:2 (2010), 179–200; Math. Notes, 87:2 (2010), 169–188
Citation in format AMSBIB
\Bibitem{ZhiPas10}
\by V.~V.~Zhikov, S.~E.~Pastukhova
\paper On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 2
\pages 179--200
\mathnet{http://mi.mathnet.ru/mzm5256}
\crossref{https://doi.org/10.4213/mzm5256}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2731471}
\zmath{https://zbmath.org/?q=an:05791037}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 2
\pages 169--188
\crossref{https://doi.org/10.1134/S0001434610010256}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276064800025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949928997}
Linking options:
  • https://www.mathnet.ru/eng/mzm5256
  • https://doi.org/10.4213/mzm5256
  • https://www.mathnet.ru/eng/mzm/v87/i2/p179
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:760
    Full-text PDF :275
    References:73
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024