Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 4, Pages 524–549
DOI: https://doi.org/10.4213/mzm521
(Mi mzm521)
 

This article is cited in 10 scientific papers (total in 10 papers)

Maximal Orders of Abelian Subgroups in Finite Chevalley Groups

E. P. Vdovin

Novosibirsk State University
References:
Abstract: In the present paper, for any finite group $G$ of Lie type (except for ${}^2F_4(q)$), the order $a(G)$ of its large Abelian subgroup is either found or estimated from above and from below (the latter is done for the groups $F_4(q)$, $E_6(q)$, $E_7(q)$, $E_8(q)$ and ${}^2E_6(q^2)$). In the groups for which the number $a(G)$ has been found exactly, any large Abelian subgroup coincides with a large unipotent or a large semisimple Abelian subgroup. For the groups $F_4(q)$, $E_6(q)$, $E_7(q)$, $E_8(q)$ and ${}^2E_6(q^2)$, it is shown that if an Abelian subgroup contains a noncentral semisimple element, then its order is less than the order of an Abelian unipotent group. Hence in these groups the large Abelian subgroups are unipotent, and in order to find the value of $a(G)$ for them, it is necessary to find the orders of the large unipotent Abelian subgroups. Thus it is proved that in a finite group of Lie type (except for ${}^2F_4(q)$) any large Abelian subgroup is either a large unipotent or a large semisimple Abelian subgroup.
Received: 10.06.1998
Revised: 01.10.2000
English version:
Mathematical Notes, 2001, Volume 69, Issue 4, Pages 475–498
DOI: https://doi.org/10.1023/A:1010256129959
Bibliographic databases:
Document Type: Article
UDC: 512.542.5
Language: Russian
Citation: E. P. Vdovin, “Maximal Orders of Abelian Subgroups in Finite Chevalley Groups”, Mat. Zametki, 69:4 (2001), 524–549; Math. Notes, 69:4 (2001), 475–498
Citation in format AMSBIB
\Bibitem{Vdo01}
\by E.~P.~Vdovin
\paper Maximal Orders of Abelian Subgroups in Finite Chevalley Groups
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 4
\pages 524--549
\mathnet{http://mi.mathnet.ru/mzm521}
\crossref{https://doi.org/10.4213/mzm521}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1845994}
\zmath{https://zbmath.org/?q=an:0994.20013}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 4
\pages 475--498
\crossref{https://doi.org/10.1023/A:1010256129959}
Linking options:
  • https://www.mathnet.ru/eng/mzm521
  • https://doi.org/10.4213/mzm521
  • https://www.mathnet.ru/eng/mzm/v69/i4/p524
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:707
    Full-text PDF :275
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024