Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 1, Pages 69–98
DOI: https://doi.org/10.4213/mzm5195
(Mi mzm5195)
 

This article is cited in 23 scientific papers (total in 23 papers)

On the Distribution of Integer Random Variables Satisfying Two Linear Relations

V. P. Maslova, V. E. Nazaikinskiib

a M. V. Lomonosov Moscow State University
b A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
References:
Abstract: We consider the multiplicative (in the sense of Vershik) probability measure corresponding to an arbitrary real dimension $d$ on the set of all collections $\{N_j\}$ of integer nonnegative numbers $N_j$, $j=l_0,l_0+1,\dots$, satisfying the conditions
$$ \sum_{j=l_0}^\infty jN_{j}\le M, \qquad \sum_{j=l_0}^\infty N_j=N, $$
where $l_0,M,N$ are natural numbers. If $M,N\to\infty$ and the rates of growth of these parameters satisfy a certain relation depending on $d$, and $l_0$ depends on them in a special way (for $d\ge2$ we can take $l_0=1$), then, in the limit, the “majority” of collections (with respect to the measure indicated above) concentrates near the limit distribution described by the Bose–Einstein formulas. We study the probabilities of the deviations of the sums $\sum_{j=l}^{\infty} N_j$ from the corresponding cumulative integrals for the limit distribution. In an earlier paper (see [6]), we studied the case $d=3$.
Keywords: Bose–Einstein distribution, multiplicative measure, cumulative distribution, cumulative integral, Bose particles.
Received: 14.06.2008
English version:
Mathematical Notes, 2008, Volume 84, Issue 1, Pages 73–99
DOI: https://doi.org/10.1134/S0001434608070079
Bibliographic databases:
UDC: 519.2+531.19
Language: Russian
Citation: V. P. Maslov, V. E. Nazaikinskii, “On the Distribution of Integer Random Variables Satisfying Two Linear Relations”, Mat. Zametki, 84:1 (2008), 69–98; Math. Notes, 84:1 (2008), 73–99
Citation in format AMSBIB
\Bibitem{MasNaz08}
\by V.~P.~Maslov, V.~E.~Nazaikinskii
\paper On the Distribution of Integer Random Variables Satisfying Two Linear Relations
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 1
\pages 69--98
\mathnet{http://mi.mathnet.ru/mzm5195}
\crossref{https://doi.org/10.4213/mzm5195}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2451886}
\elib{https://elibrary.ru/item.asp?id=13595066}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 1
\pages 73--99
\crossref{https://doi.org/10.1134/S0001434608070079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258855600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50849125696}
Linking options:
  • https://www.mathnet.ru/eng/mzm5195
  • https://doi.org/10.4213/mzm5195
  • https://www.mathnet.ru/eng/mzm/v84/i1/p69
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:829
    Full-text PDF :274
    References:109
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024