Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 1, Pages 3–22
DOI: https://doi.org/10.4213/mzm5194
(Mi mzm5194)
 

This article is cited in 12 scientific papers (total in 12 papers)

The Sharp Markov–Nikolskii Inequality for Algebraic Polynomials in the Spaces Lq and L0 on a Closed Interval

P. Yu. Glazyrina

Ural State University
References:
Abstract: In this paper, an inequality between the Lq-mean of the kth derivative of an algebraic polynomial of degree n1 and the L0-mean of the polynomial on a closed interval is obtained. Earlier, the author obtained the best constant in this inequality for k=0, q[0,] and 1kn, q{0}[1,]. Here a new method for finding the best constant for all 0kn, q[0,], and, in particular, for the case 1kn, q(0,1), which has not been studied before is proposed. We find the order of growth of the best constant with respect to n as n for fixed k and q.
Keywords: algebraic polynomial, Markov–Nikolskii inequality, the spaces Lq and L0, geometric mean of a polynomial, Lq-mean, extremal polynomial, majorization principle.
Received: 31.07.2007
English version:
Mathematical Notes, 2008, Volume 84, Issue 1, Pages 3–21
DOI: https://doi.org/10.1134/S0001434608070018
Bibliographic databases:
UDC: 517.518.862
Language: Russian
Citation: P. Yu. Glazyrina, “The Sharp Markov–Nikolskii Inequality for Algebraic Polynomials in the Spaces Lq and L0 on a Closed Interval”, Mat. Zametki, 84:1 (2008), 3–22; Math. Notes, 84:1 (2008), 3–21
Citation in format AMSBIB
\Bibitem{Gla08}
\by P.~Yu.~Glazyrina
\paper The Sharp Markov--Nikolskii Inequality for Algebraic Polynomials in the Spaces~$L_q$ and $L_0$ on a Closed Interval
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 1
\pages 3--22
\mathnet{http://mi.mathnet.ru/mzm5194}
\crossref{https://doi.org/10.4213/mzm5194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2451401}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 1
\pages 3--21
\crossref{https://doi.org/10.1134/S0001434608070018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258855600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50849083799}
Linking options:
  • https://www.mathnet.ru/eng/mzm5194
  • https://doi.org/10.4213/mzm5194
  • https://www.mathnet.ru/eng/mzm/v84/i1/p3
  • This publication is cited in the following 12 articles:
    1. Komarov M.A., “The Turan-Type Inequality in the Space l-0 on the Unit Interval”, Anal. Math., 47:4 (2021), 843–852  crossref  mathscinet  isi  scopus
    2. N. S. Payuchenko, “Slaboe neravenstvo Markova dlya algebraicheskikh mnogochlenov na otrezke”, Tr. IMM UrO RAN, 25, no. 2, 2019, 160–166  mathnet  crossref  elib
    3. Mirosław Baran, Paweł Ozorka, “On Vladimir Markov type inequality in Lp norms on the interval [-1; 1]”, Sci. Tech., Innov, 7:4 (2019), 9  crossref
    4. Mirosław Baran, Agnieszka Kowalska, Paweł Ozorka, “Optimal factors in Vladimir Markov's inequality in L2 Norm”, Sci, Tech. Innov., 2:1 (2018), 64  crossref
    5. Arestov V. Deikalova M., “Nikol'skii inequality between the uniform norm and L q -norm with Jacobi weight of algebraic polynomials on an interval”, Anal. Math., 42:2 (2016), 91–120  crossref  mathscinet  zmath  isi  elib  scopus
    6. Arestov V. Deikalova M., “Nikol'Skii Inequality Between the Uniform Norm and l-Q-Norm With Ultraspherical Weight of Algebraic Polynomials on An Interval”, Comput. Methods Funct. Theory, 15:4, SI (2015), 689–708  crossref  mathscinet  zmath  isi  elib  scopus
    7. Sroka G., “Constants in Va Markov'S Inequality in l-P Norms”, J. Approx. Theory, 194 (2015), 27–34  crossref  mathscinet  zmath  isi  elib  scopus
    8. Klurman O., “On Constrained Markov-Nikolskii Type Inequalities For K-Absolutely Monotone Polynomials”, Acta Math. Hung., 143:1 (2014), 13–22  crossref  mathscinet  zmath  isi  scopus
    9. V. V. Arestov, M. V. Deikalova, “Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 9–23  mathnet  crossref  mathscinet  isi  elib
    10. M. R. Gabdullin, “Otsenka srednego geometricheskogo proizvodnoi mnogochlena cherez ego ravnomernuyu normu na otrezke”, Tr. IMM UrO RAN, 18, no. 4, 2012, 153–161  mathnet  elib
    11. I. E. Simonov, “Sharp Markov brothers type inequality in the spaces L p and L 1 on a closed interval”, Proc. Steklov Inst. Math., 277:S1 (2012), 161  crossref
    12. I. E. Simonov, “Tochnoe neravenstvo tipa bratev Markovykh v prostranstvakh $L_p$, $L_1$ na otrezke”, Tr. IMM UrO RAN, 17, no. 3, 2011, 282–290  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:976
    Full-text PDF :538
    References:100
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025