Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 1, Pages 3–22
DOI: https://doi.org/10.4213/mzm5194
(Mi mzm5194)
 

This article is cited in 12 scientific papers (total in 12 papers)

The Sharp Markov–Nikolskii Inequality for Algebraic Polynomials in the Spaces $L_q$ and $L_0$ on a Closed Interval

P. Yu. Glazyrina

Ural State University
References:
Abstract: In this paper, an inequality between the $L_q$-mean of the $k$th derivative of an algebraic polynomial of degree $n\ge 1$ and the $L_0$-mean of the polynomial on a closed interval is obtained. Earlier, the author obtained the best constant in this inequality for $k=0$, $q\in[0,\infty]$ and $1\le k\le n$, $q\in\{0\}\cup[1,\infty]$. Here a new method for finding the best constant for all $0\le k\le n$, $q\in[0,\infty]$, and, in particular, for the case $1\le k\le n$, $q\in(0,1)$, which has not been studied before is proposed. We find the order of growth of the best constant with respect to $n$ as $n\to \infty$ for fixed $k$ and $q$.
Keywords: algebraic polynomial, Markov–Nikolskii inequality, the spaces $L_q$ and $L_0$, geometric mean of a polynomial, $L_q$-mean, extremal polynomial, majorization principle.
Received: 31.07.2007
English version:
Mathematical Notes, 2008, Volume 84, Issue 1, Pages 3–21
DOI: https://doi.org/10.1134/S0001434608070018
Bibliographic databases:
UDC: 517.518.862
Language: Russian
Citation: P. Yu. Glazyrina, “The Sharp Markov–Nikolskii Inequality for Algebraic Polynomials in the Spaces $L_q$ and $L_0$ on a Closed Interval”, Mat. Zametki, 84:1 (2008), 3–22; Math. Notes, 84:1 (2008), 3–21
Citation in format AMSBIB
\Bibitem{Gla08}
\by P.~Yu.~Glazyrina
\paper The Sharp Markov--Nikolskii Inequality for Algebraic Polynomials in the Spaces~$L_q$ and $L_0$ on a Closed Interval
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 1
\pages 3--22
\mathnet{http://mi.mathnet.ru/mzm5194}
\crossref{https://doi.org/10.4213/mzm5194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2451401}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 1
\pages 3--21
\crossref{https://doi.org/10.1134/S0001434608070018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258855600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50849083799}
Linking options:
  • https://www.mathnet.ru/eng/mzm5194
  • https://doi.org/10.4213/mzm5194
  • https://www.mathnet.ru/eng/mzm/v84/i1/p3
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024