Abstract:
In this paper, an inequality between the Lq-mean of the kth derivative of an algebraic polynomial of degree n⩾1 and the L0-mean of the polynomial on a closed interval is obtained. Earlier, the author obtained the best constant in this inequality for k=0, q∈[0,∞] and 1⩽k⩽n, q∈{0}∪[1,∞]. Here a new method for finding the best constant for all 0⩽k⩽n, q∈[0,∞], and, in particular, for the case 1⩽k⩽n, q∈(0,1), which has not been studied before is proposed. We find the order of growth of the best constant with respect to n as n→∞ for fixed k and q.
Keywords:
algebraic polynomial, Markov–Nikolskii inequality, the spaces Lq and L0, geometric mean of a polynomial, Lq-mean, extremal polynomial, majorization principle.
Citation:
P. Yu. Glazyrina, “The Sharp Markov–Nikolskii Inequality for Algebraic Polynomials in the Spaces Lq and L0 on a Closed Interval”, Mat. Zametki, 84:1 (2008), 3–22; Math. Notes, 84:1 (2008), 3–21
\Bibitem{Gla08}
\by P.~Yu.~Glazyrina
\paper The Sharp Markov--Nikolskii Inequality for Algebraic Polynomials in the Spaces~$L_q$ and $L_0$ on a Closed Interval
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 1
\pages 3--22
\mathnet{http://mi.mathnet.ru/mzm5194}
\crossref{https://doi.org/10.4213/mzm5194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2451401}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 1
\pages 3--21
\crossref{https://doi.org/10.1134/S0001434608070018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258855600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50849083799}
Linking options:
https://www.mathnet.ru/eng/mzm5194
https://doi.org/10.4213/mzm5194
https://www.mathnet.ru/eng/mzm/v84/i1/p3
This publication is cited in the following 12 articles:
Komarov M.A., “The Turan-Type Inequality in the Space l-0 on the Unit Interval”, Anal. Math., 47:4 (2021), 843–852
N. S. Payuchenko, “Slaboe neravenstvo Markova dlya algebraicheskikh mnogochlenov na otrezke”, Tr. IMM UrO RAN, 25, no. 2, 2019, 160–166
Mirosław Baran, Paweł Ozorka, “On Vladimir Markov type inequality in Lp norms on the interval [-1; 1]”, Sci. Tech., Innov, 7:4 (2019), 9
Mirosław Baran, Agnieszka Kowalska, Paweł Ozorka, “Optimal factors in Vladimir Markov's inequality in L2 Norm”, Sci, Tech. Innov., 2:1 (2018), 64
Arestov V. Deikalova M., “Nikol'skii inequality between the uniform norm and L q -norm with Jacobi weight of algebraic polynomials on an interval”, Anal. Math., 42:2 (2016), 91–120
Arestov V. Deikalova M., “Nikol'Skii Inequality Between the Uniform Norm and l-Q-Norm With Ultraspherical Weight of Algebraic Polynomials on An Interval”, Comput. Methods Funct. Theory, 15:4, SI (2015), 689–708
Sroka G., “Constants in Va Markov'S Inequality in l-P Norms”, J. Approx. Theory, 194 (2015), 27–34
Klurman O., “On Constrained Markov-Nikolskii Type Inequalities For K-Absolutely Monotone Polynomials”, Acta Math. Hung., 143:1 (2014), 13–22
V. V. Arestov, M. V. Deikalova, “Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 9–23
M. R. Gabdullin, “Otsenka srednego geometricheskogo proizvodnoi mnogochlena cherez ego ravnomernuyu normu na otrezke”, Tr. IMM UrO RAN, 18, no. 4, 2012, 153–161
I. E. Simonov, “Sharp Markov brothers type inequality in the spaces L p and L 1 on a closed interval”, Proc. Steklov Inst. Math., 277:S1 (2012), 161
I. E. Simonov, “Tochnoe neravenstvo tipa bratev Markovykh v prostranstvakh $L_p$, $L_1$ na otrezke”, Tr. IMM UrO RAN, 17, no. 3, 2011, 282–290