Abstract:
We prove a new sharp Kolmogorov-type inequality that estimates the uniform norm of a mixed derivative of fractional order (in the sense of Marchaud) of a function of several variables via the uniform norm of the function and its norm on Hölder spaces.
Citation:
V. F. Babenko, S. A. Pichugov, “Sharp Estimates of the Norms of Fractional Derivatives of Functions of Several Variables Satisfying Hölder Conditions”, Mat. Zametki, 87:1 (2010), 26–34; Math. Notes, 87:1 (2010), 23–30
\Bibitem{BabPic10}
\by V.~F.~Babenko, S.~A.~Pichugov
\paper Sharp Estimates of the Norms of Fractional Derivatives of Functions of Several Variables Satisfying H\"older Conditions
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 1
\pages 26--34
\mathnet{http://mi.mathnet.ru/mzm5180}
\crossref{https://doi.org/10.4213/mzm5180}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2730380}
\zmath{https://zbmath.org/?q=an:05791016}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 1
\pages 23--30
\crossref{https://doi.org/10.1134/S0001434610010049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276064800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950015718}
Linking options:
https://www.mathnet.ru/eng/mzm5180
https://doi.org/10.4213/mzm5180
https://www.mathnet.ru/eng/mzm/v87/i1/p26
This publication is cited in the following 9 articles:
Vladyslav Babenko, Oleg Kovalenko, Nataliia Parfinovych, “On approximation of hypersingular integral operators by bounded ones”, Journal of Mathematical Analysis and Applications, 513:2 (2022), 126215
M. Sh. Shabozov, M. O. Akobirshoev, “O neravenstvakh tipa Kolmogorova dlya periodicheskikh funktsii dvukh peremennykh v L2”, Chebyshevskii sb., 20:2 (2019), 348–365
Nataliia V. Parfinovych, “Kolmogorov inequalities for the norms of the Riesz derivatives of functions of many variables”, J Math Sci, 229:1 (2018), 85
Babenko V.F. Parfinovich N.V., “Estimation of the Uniform Norm of One-Dimensional Riesz Potential of the Partial Derivative of a Function with Bounded Laplacian”, Ukr. Math. J., 68:7 (2016), 987–999
V. F. Babenko, N. V. Parfinovich, S. A. Pichugov, “Kolmogorov-Type Inequalities for Norms of Riesz Derivatives of Functions of Several Variables with Laplacian Bounded in L∞ and Related Problems”, Math. Notes, 95:1 (2014), 3–14
V. F. Babenko, M. S. Churilova, N. V. Parfinovych, D. S. Skorokhodov, “Kolmogorov type inequalities for the Marchaud fractional derivatives on the real line and the half-line”, J. Inequal. Appl., 2014, 504
Vladislav F. Babenko, Natal'ya V. Parfinovich, “Inequalities of the Kolmogorov type for norms of Riesz derivatives of multivariate functions and some of their applications”, J Math Sci, 187:1 (2012), 9
V. F. Babenko, N. V. Parfinovich, “Kolmogorov-type inequalities for the norms of Riesz derivatives of multivariable functions and some applications”, Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 9–20
Babenko V.F., Parfinovych N.V., Pichugov S.A., “Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions”, Ukrainian Math. J., 62:3 (2010), 343–357