Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 1, Pages 110–125
DOI: https://doi.org/10.4213/mzm5179
(Mi mzm5179)
 

This article is cited in 23 scientific papers (total in 23 papers)

Approximation of Coincidence Points and Common Fixed Points of a Collection of Mappings of Metric Spaces

T. N. Fomenko

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
References:
Abstract: On a complete metric space $X$, we solve the problem of constructing an algorithm (in general, nonunique) of successive approximations from any point in space to a given closed subset $A$. We give an estimate of the distance from an arbitrary initial point to the corresponding limit points. We consider three versions of the subset $A$: (1) $A$ is the complete preimage of a closed subspace $H$ under a mapping from $X$ into the metric space $Y$; (2) $A$ is the set of coincidence points of $n$ ($n>1$) mappings from $X$ into $Y$; (3) $A$ is the set of common fixed points of $n$ mappings of $X$ into itself ($n=1,2,\dots$). The problems under consideration are stated conveniently in terms of a multicascade, i.e., of a generalized discrete dynamical system with phase space $X$, translation semigroup equal to the additive semigroup of nonnegative integers, and the limit set $A$. In particular, in case (2) for $n=2$, we obtain a generalization of Arutyunov's theorem on the coincidences of two mappings. In case (3) for $n=1$, we obtain a generalization of the contraction mapping principle.
Keywords: metric space, successive approximations, coincidence point, fixed point, discrete dynamical system, translation semigroup, contraction mapping principle.
Received: 21.05.2008
English version:
Mathematical Notes, 2009, Volume 86, Issue 1, Pages 107–120
DOI: https://doi.org/10.1134/S0001434609070104
Bibliographic databases:
UDC: 515.124, 515.126.4, 517.938.5
Language: Russian
Citation: T. N. Fomenko, “Approximation of Coincidence Points and Common Fixed Points of a Collection of Mappings of Metric Spaces”, Mat. Zametki, 86:1 (2009), 110–125; Math. Notes, 86:1 (2009), 107–120
Citation in format AMSBIB
\Bibitem{Fom09}
\by T.~N.~Fomenko
\paper Approximation of Coincidence Points and Common Fixed Points of a Collection of Mappings of Metric Spaces
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 1
\pages 110--125
\mathnet{http://mi.mathnet.ru/mzm5179}
\crossref{https://doi.org/10.4213/mzm5179}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2588642}
\zmath{https://zbmath.org/?q=an:1196.54071}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 1
\pages 107--120
\crossref{https://doi.org/10.1134/S0001434609070104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269660400010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-73749086985}
Linking options:
  • https://www.mathnet.ru/eng/mzm5179
  • https://doi.org/10.4213/mzm5179
  • https://www.mathnet.ru/eng/mzm/v86/i1/p110
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:656
    Full-text PDF :241
    References:77
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024