Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 3, Pages 380–388
DOI: https://doi.org/10.4213/mzm5155
(Mi mzm5155)
 

This article is cited in 2 scientific papers (total in 2 papers)

A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds

V. F. Kirichenko, E. A. Pol'kina

Moscow State Pedagogical University
Full-text PDF (489 kB) Citations (2)
References:
Abstract: The following question is considered: Which quasi-Sasakian (cosymplectic, Sasakian, or proper quasi-Sasakian) structures admit nontrivial concircular transformations of their metrics (i.e., determine Fialkow spaces), and under what conditions. It is proved that any cosymplectic manifold is a Fialkow space. Necessary and sufficient conditions for a Sasakian or a quasi-Sasakian manifold to be a Fialkow space are obtained. A fairly large class of Sasakian manifolds which are not Fialkow spaces is described.
Keywords: quasi-Sasakian structure, concircular transformation of a metric, Fialkow space, cosymplectic manifold, Sasakian manifold, Kenmotsu manifold.
Received: 16.09.2008
English version:
Mathematical Notes, 2009, Volume 86, Issue 3, Pages 349–356
DOI: https://doi.org/10.1134/S0001434609090077
Bibliographic databases:
UDC: 514.76
Language: Russian
Citation: V. F. Kirichenko, E. A. Pol'kina, “A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds”, Mat. Zametki, 86:3 (2009), 380–388; Math. Notes, 86:3 (2009), 349–356
Citation in format AMSBIB
\Bibitem{KirPol09}
\by V.~F.~Kirichenko, E.~A.~Pol'kina
\paper A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 3
\pages 380--388
\mathnet{http://mi.mathnet.ru/mzm5155}
\crossref{https://doi.org/10.4213/mzm5155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2591376}
\zmath{https://zbmath.org/?q=an:1181.53031}
\elib{https://elibrary.ru/item.asp?id=15312764}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 3
\pages 349--356
\crossref{https://doi.org/10.1134/S0001434609090077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271950700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249127752}
Linking options:
  • https://www.mathnet.ru/eng/mzm5155
  • https://doi.org/10.4213/mzm5155
  • https://www.mathnet.ru/eng/mzm/v86/i3/p380
  • This publication is cited in the following 2 articles:
    1. O. E. Arseneva, M. B. Banaru, M. P. Burlakov, N. I. Guseva, A. R. Rustanov, S. V. Kharitonova, A.M. Shelekhov, “Vadim Fedorovich Kirichenko”, Materialy Mezhdunarodnoi konferentsii  «Klassicheskaya i sovremennaya geometriya»,  posvyaschennoi 100-letiyu so dnya rozhdeniya  professora Levona Sergeevicha Atanasyana  (15 iyulya 1921 g.—5 iyulya 1998 g.). Moskva, 1–4 noyabrya 2021 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 220, VINITI RAN, M., 2023, 3–16  mathnet  crossref
    2. Olszak K., Olszak Z., “On pseudo-Riemannian manifolds with recurrent concircular curvature tensor”, Acta Math. Hung., 137:1-2 (2012), 64–71  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:465
    Full-text PDF :194
    References:71
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025