Abstract:
The following question is considered: Which quasi-Sasakian (cosymplectic, Sasakian, or proper quasi-Sasakian) structures admit nontrivial concircular transformations of their metrics (i.e., determine Fialkow spaces), and under what conditions. It is proved that any cosymplectic manifold is a Fialkow space. Necessary and sufficient conditions for a Sasakian or a quasi-Sasakian manifold to be a Fialkow space are obtained. A fairly large class of Sasakian manifolds which are not Fialkow spaces is described.
Keywords:
quasi-Sasakian structure, concircular transformation of a metric, Fialkow space, cosymplectic manifold, Sasakian manifold, Kenmotsu manifold.
Citation:
V. F. Kirichenko, E. A. Pol'kina, “A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds”, Mat. Zametki, 86:3 (2009), 380–388; Math. Notes, 86:3 (2009), 349–356
This publication is cited in the following 2 articles:
O. E. Arseneva, M. B. Banaru, M. P. Burlakov, N. I. Guseva, A. R. Rustanov, S. V. Kharitonova, A.M. Shelekhov, “Vadim Fedorovich Kirichenko”, Materialy Mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya», posvyaschennoi 100-letiyu so dnya rozhdeniya professora Levona Sergeevicha Atanasyana (15 iyulya 1921 g.—5 iyulya 1998 g.).
Moskva, 1–4 noyabrya 2021 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 220, VINITI RAN, M., 2023, 3–16
Olszak K., Olszak Z., “On pseudo-Riemannian manifolds with recurrent concircular curvature tensor”, Acta Math. Hung., 137:1-2 (2012), 64–71