Citation:
V. E. Maiorov, “Trigonometric diameters of the Sobolev classes Wrp in the space Lp”, Mat. Zametki, 40:2 (1986), 161–173; Math. Notes, 40:2 (1986), 590–597
\Bibitem{Mai86}
\by V.~E.~Maiorov
\paper Trigonometric diameters of the Sobolev classes $W^r_p$ in the space $L_p$
\jour Mat. Zametki
\yr 1986
\vol 40
\issue 2
\pages 161--173
\mathnet{http://mi.mathnet.ru/mzm5144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=864281}
\zmath{https://zbmath.org/?q=an:0623.41024}
\transl
\jour Math. Notes
\yr 1986
\vol 40
\issue 2
\pages 590--597
\crossref{https://doi.org/10.1007/BF01159113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986G235400016}
Linking options:
https://www.mathnet.ru/eng/mzm5144
https://www.mathnet.ru/eng/mzm/v40/i2/p161
This publication is cited in the following 12 articles:
G. Akishev, “Estimates of $M$–term approximations of functions of several variables in the Lorentz space by a constructive method”, Eurasian Math. J., 15:2 (2024), 8–32
G. A. Akishev, “On estimates for orders of best $M$-term approximations
of multivariate functions in anisotropic Lorentz–Karamata spaces”, Ufa Math. J., 15:1 (2023), 1–20
G. A. Akishev, “O poryadkakh $n$-chlennykh priblizhenii funktsii mnogikh peremennykh v prostranstve Lorentsa”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 227, VINITI RAN, M., 2023, 3–19
G. A. Akishev, “O nailuchshikh $M$-chlennykh priblizheniyakh funktsii klassa Nikolskogo – Besova v prostranstve Lorentsa”, Tr. IMM UrO RAN, 28, no. 1, 2022, 7–26
G. Akishev, A. Myrzagaliyeva, “ON ESTIMATES OF M-TERM APPROXIMATIONS ON CLASSES OF FUNCTIONS WITH BOUNDED MIXED DERIVATIVE IN THE LORENTZ SPACE”, J Math Sci, 266:6 (2022), 870
K. A. Bekmaganbetov, Y. Toleugazy, “On the Order of the Trigonometric Diameter of the Anisotropic Nikol'skii–Besov Class in the Metric of Anisotropic Lorentz Spaces”, Anal Math, 45:2 (2019), 237
Akishev G., “Estimations of the Best M - Term Approximations of Functions in the Lorentz Space With Constructive Methods”, Bull. Karaganda Univ-Math., 87:3 (2017), 13–26
V. Temlyakov, “Constructive Sparse Trigonometric Approximation for Functions with Small Mixed Smoothness”, Constr. Approx., 45 (2017), 467–495
Temlyakov V., “Sparse Approximation by Greedy Algorithms”, Mathematical Analysis, Probability and Applications – Plenary Lectures, Springer Proceedings in Mathematics & Statistics, Springer Proceedings in Mathematics & Statistics, 177, ed. Qian T. Rodino L., Springer, 2016, 183–215
Vladimir Temlyakov, Applied and Numerical Harmonic Analysis, New Trends in Applied Harmonic Analysis, 2016, 107
Vladimir Temlyakov, “Incremental greedy algorithm and its applications in numerical integration”, Springer Proc. Math. Statist., 163 (2016), 557–570
V. N. Temlyakov, “Constructive sparse trigonometric approximation and other problems for functions with mixed smoothness”, Sb. Math., 206:11 (2015), 1628–1656