Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 3, Pages 353–362
DOI: https://doi.org/10.4213/mzm509
(Mi mzm509)
 

This article is cited in 5 scientific papers (total in 5 papers)

Minimal Bases in Complete 3-Lattices

O. A. Gorkusha

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences
Full-text PDF (187 kB) Citations (5)
References:
Abstract: We construct so-called “minimal bases” in the Minkowski sense for complete 3-lattices.
Received: 17.01.2000
English version:
Mathematical Notes, 2001, Volume 69, Issue 3, Pages 320–328
DOI: https://doi.org/10.1023/A:1010227323598
Bibliographic databases:
UDC: 511.334+515.178
Language: Russian
Citation: O. A. Gorkusha, “Minimal Bases in Complete 3-Lattices”, Mat. Zametki, 69:3 (2001), 353–362; Math. Notes, 69:3 (2001), 320–328
Citation in format AMSBIB
\Bibitem{Gor01}
\by O.~A.~Gorkusha
\paper Minimal Bases in Complete 3-Lattices
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 3
\pages 353--362
\mathnet{http://mi.mathnet.ru/mzm509}
\crossref{https://doi.org/10.4213/mzm509}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846834}
\zmath{https://zbmath.org/?q=an:0997.11048}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 3
\pages 320--328
\crossref{https://doi.org/10.1023/A:1010227323598}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169324200005}
Linking options:
  • https://www.mathnet.ru/eng/mzm509
  • https://doi.org/10.4213/mzm509
  • https://www.mathnet.ru/eng/mzm/v69/i3/p353
  • This publication is cited in the following 5 articles:
    1. A. V. Ustinov, “On the Three-Dimensional Vahlen Theorem”, Math. Notes, 95:1 (2014), 136–138  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. Oleg Karpenkov, Algorithms and Computation in Mathematics, 26, Geometry of Continued Fractions, 2013, 357  crossref
    3. A. V. Ustinov, “Minimal Vector Systems in 3-Dimensional Lattices and Analog of Vahlen's Theorem for 3-Dimensional Minkowski's Continued Fractions”, Proc. Steklov Inst. Math., 280, suppl. 2 (2013), S91–S116  mathnet  crossref  crossref  zmath  isi  elib
    4. A. A. Illarionov, “The average number of local minima of three-dimensional integer lattices”, St. Petersburg Math. J., 23:3 (2012), 551–570  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    5. M. O. Avdeeva, V. A. Bykovskii, “An analogue of Vahlen's theorem for simultaneous approximations of a pair of numbers”, Sb. Math., 194:7 (2003), 955–967  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :216
    References:100
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025