Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 88, Issue 5, Pages 778–791
DOI: https://doi.org/10.4213/mzm5073
(Mi mzm5073)
 

This article is cited in 9 scientific papers (total in 9 papers)

Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings

V. De Filippis, F. Rania

University of Messina, Italy
Full-text PDF (484 kB) Citations (9)
References:
Abstract: Let $R$ be a noncommutative prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C$ the extended centroid of $R$, and $L$ a noncentral Lie ideal of $R$. If $F$ and $G$ are generalized derivations of $R$ and $k\ge1$ a fixed integer such that $[F(x),x]_kx-x[G(x),x]_k=0$ for any $x\in L$, then one of the following holds:
  • 1) either there exists an $a\in U$ and an $\alpha\in C$ such that $F(x)=xa$ and $G(x)=(a+\alpha)x$ for all $x\in R$;
  • 2) or $R$ satisfies the standard identity $s_4(x_1,\dots,x_4)$ and one of the following conclusions occurs: \begin{itemize}
  • (a) there exist $a,b,c,q\in U$, such that $a-b+c-q\in C$ and $F(x)=ax+xb$, $G(x)=cx+xq$ for all $x\in R$;
  • (b) there exist $a,b,c\in U$ and a derivation $d$ of $U$ such that $F(x)=ax+d(x)$ and $G(x)=bx+xc-d(x)$ for all $x\in R$, with $a+b-c\in C$.
\end{itemize}
Keywords: prime ring, derivation, generalized derivation, utumi quotient ring, differential identity, (hyper-)centralizing map, generalized polynomial identity.
Received: 11.05.2010
English version:
Mathematical Notes, 2010, Volume 88, Issue 5, Pages 748–758
DOI: https://doi.org/10.1134/S0001434610110143
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: V. De Filippis, F. Rania, “Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings”, Mat. Zametki, 88:5 (2010), 778–791; Math. Notes, 88:5 (2010), 748–758
Citation in format AMSBIB
\Bibitem{De Ran10}
\by V.~De Filippis, F.~Rania
\paper Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 5
\pages 778--791
\mathnet{http://mi.mathnet.ru/mzm5073}
\crossref{https://doi.org/10.4213/mzm5073}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2868400}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 5
\pages 748--758
\crossref{https://doi.org/10.1134/S0001434610110143}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288489700014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78651228440}
Linking options:
  • https://www.mathnet.ru/eng/mzm5073
  • https://doi.org/10.4213/mzm5073
  • https://www.mathnet.ru/eng/mzm/v88/i5/p778
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024