Abstract:
In this paper we consider the Sturm–Liouville operators generated by the differential expression −y+q(x)y and by Dirichlet boundary conditions on the closed interval [0,π]. Here q(x) is a distribution of first order, i.e., ∫q(x)dx∈L2[0,π]. Asymptotic formulas for the eigenvalues and eigenfunctions of such operators which depend on the smoothness degree of q(x) are obtained.
Citation:
A. M. Savchuk, “On the Eigenvalues and Eigenfunctions of the Sturm–Liouville Operator with a Singular Potential”, Mat. Zametki, 69:2 (2001), 277–285; Math. Notes, 69:2 (2001), 245–252
Michael Ruzhansky, Serikbol Shaimardan, Alibek Yeskermessuly, “Wave equation for Sturm-Liouville operator with singular potentials”, Journal of Mathematical Analysis and Applications, 531:1 (2024), 127783
Alibek Yeskermessuly, Trends in Mathematics, 4, Modern Problems in PDEs and Applications, 2024, 175
M. Yu. Vatolkin, “Investigation of the Asymptotics of the Eigenvalues of a Second-Order Quasidifferential Boundary Value Problem”, Russ Math., 68:3 (2024), 11
M. Yu. Vatolkin, “On the Approximation of the First Eigenvalue of Some Boundary Value Problems”, Comput. Math. and Math. Phys., 64:6 (2024), 1224
M. Yu. Vatolkin, “Investigation of the Dimension of the Spectral Projection of a Self-Adjoint Second-Order Quasidifferential Operator”, Russ Math., 68:7 (2024), 34
M. Yu. Vatolkin, “On the approximation of the first eigenvalue of some boundary value problems”, Comput. Math. Math. Phys., 64:6 (2024), 1224–1239
Michael Ruzhansky, Alibek Yeskermessuly, “Wave Equation for Sturm–Liouville Operator with Singular Intermediate Coefficient and Potential”, Bull. Malays. Math. Sci. Soc., 46:6 (2023)
Nilüfer TOPSAKAL, Rauf AMİROV, “On GLM type integral equation for singular Sturm-Liouville operator which has discontinuous coefficient”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 71:2 (2022), 305
Bondarenko N.P., “A Partial Inverse Sturm-Liouville Problem on An Arbitrary Graph”, Math. Meth. Appl. Sci., 44:8 (2021), 6896–6910
Bondarenko N.P., “Solving An Inverse Problem For the Sturm-Liouville Operator With Singular Potential By Yurko'S Method”, Tamkang J. Math., 52:1, SI (2021), 125–154
N. P. Bondarenko, “Direct and Inverse Problems for the Matrix Sturm–Liouville
Operator with General Self-Adjoint Boundary Conditions”, Math. Notes, 109:3 (2021), 358–378
Aldana C.L. Caillau J.-B. Freitas P., “Maximal Determinants of Schrodinger Operators on Bounded Intervals”, J. Ecole Polytech.-Math., 7 (2020), 803–829
Yang Ch.-F., Bondarenko N.P., “A Partial Inverse Problem For the Sturm-Liouville Operator on the Lasso-Graph”, Inverse Probl. Imaging, 13:1 (2019), 69–79
Bondarenko N.P., “An Inverse Problem For Sturm-Liouville Operators on Trees With Partial Information Given on the Potentials”, Math. Meth. Appl. Sci., 42:5 (2019), 1512–1528
Guliyev N.J., “Schrodinger Operators With Distributional Potentials and Boundary Conditions Dependent on the Eigenvalue Parameter”, J. Math. Phys., 60:6 (2019), 063501
L. V. Kritskov, “Bessel property of the system of root functions of a second-order singular operator on an interval”, Differ. Equ., 54:8 (2018), 1032–1048
Leonid V. Kritskov, Springer Proceedings in Mathematics & Statistics, 216, Functional Analysis in Interdisciplinary Applications, 2017, 245
A. Yu. Trynin, “On inverse nodal problem for Sturm-Liouville operator”, Ufa Math. J., 5:4 (2013), 112–124