Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 91, Issue 6, Pages 896–899
DOI: https://doi.org/10.4213/mzm4994
(Mi mzm4994)
 

This article is cited in 1 scientific paper (total in 1 paper)

Holomorphic Affine Vector Fields on Weil Bundles

A. Ya. Sultanov

Penza State Pedagogical University named after V. G. Belinsky
Full-text PDF (404 kB) Citations (1)
References:
Abstract: We obtain necessary and sufficient conditions for a holomorphic vector field to be affine for a holomorphic linear connection defined on a Weil bundle. We also prove that the Lie algebra over $\mathbb{R}$ of holomorphic affine vector fields for the natural prolongation of a linear connection from the base to the Weil bundle is isomorphic to the tensor product of the Weil algebra by the Lie algebra of affine vector fields on the base.
Keywords: Weil algebra, Weil bundle, holomorphic vector field, holomorphic connection, affine structure, affine vector field, prolongation of connections.
Received: 21.05.2008
Revised: 29.11.2011
English version:
Mathematical Notes, 2012, Volume 91, Issue 6, Pages 847–850
DOI: https://doi.org/10.1134/S0001434612050318
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: A. Ya. Sultanov, “Holomorphic Affine Vector Fields on Weil Bundles”, Mat. Zametki, 91:6 (2012), 896–899; Math. Notes, 91:6 (2012), 847–850
Citation in format AMSBIB
\Bibitem{Sul12}
\by A.~Ya.~Sultanov
\paper Holomorphic Affine Vector Fields on Weil Bundles
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 6
\pages 896--899
\mathnet{http://mi.mathnet.ru/mzm4994}
\crossref{https://doi.org/10.4213/mzm4994}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201527}
\elib{https://elibrary.ru/item.asp?id=20731555}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 6
\pages 847--850
\crossref{https://doi.org/10.1134/S0001434612050318}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305984400031}
\elib{https://elibrary.ru/item.asp?id=24952904}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864220255}
Linking options:
  • https://www.mathnet.ru/eng/mzm4994
  • https://doi.org/10.4213/mzm4994
  • https://www.mathnet.ru/eng/mzm/v91/i6/p896
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024