Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1986, Volume 39, Issue 3, Pages 337–348 (Mi mzm4952)  

Uniqueness of the best approximation in mean of vector-valued functions

A. L. Garkavi
Received: 11.09.1984
English version:
Mathematical Notes, 1986, Volume 39, Issue 3, Pages 183–189
DOI: https://doi.org/10.1007/BF01170245
Bibliographic databases:
UDC: 517
Language: Russian
Citation: A. L. Garkavi, “Uniqueness of the best approximation in mean of vector-valued functions”, Mat. Zametki, 39:3 (1986), 337–348; Math. Notes, 39:3 (1986), 183–189
Citation in format AMSBIB
\Bibitem{Gar86}
\by A.~L.~Garkavi
\paper Uniqueness of the best approximation in mean of vector-valued functions
\jour Mat. Zametki
\yr 1986
\vol 39
\issue 3
\pages 337--348
\mathnet{http://mi.mathnet.ru/mzm4952}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=850180}
\zmath{https://zbmath.org/?q=an:0602.41026}
\transl
\jour Math. Notes
\yr 1986
\vol 39
\issue 3
\pages 183--189
\crossref{https://doi.org/10.1007/BF01170245}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986E592400005}
Linking options:
  • https://www.mathnet.ru/eng/mzm4952
  • https://www.mathnet.ru/eng/mzm/v39/i3/p337
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025