Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 4, Pages 507–522
DOI: https://doi.org/10.4213/mzm49
(Mi mzm49)
 

This article is cited in 41 scientific papers (total in 41 papers)

Universal Models For Real Submanifolds

V. K. Beloshapka

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In previous papers by the present author, a machinery for calculating automorphisms, constructing invariants, and classifying real submanifolds of a complex manifold was developed. The main step in this machinery is the construction of a “nice” model surface. The nice model surface can be treated as an analog of the osculating paraboloid in classical differential geometry. Model surfaces suggested earlier possess a complete list of the desired properties only if some upper estimate for the codimension of the submanifold is satisfied. If this estimate fails, then the surfaces lose the universality property (that is, the ability to touch any germ in an appropriate way), which restricts their applicability. In the present paper, we get rid of this restriction: for an arbitrary type $(n,K)$ (where $n$ is the dimension of the complex tangent plane, and $K$ is the real codimension), we construct a nice model surface. In particular, we solve the problem of constructing a nondegenerate germ of a real analytic submanifold of a complex manifold of arbitrary given type $(n,K)$ with the richest possible group of holomorphic automorphisms in the given class.
Received: 03.06.2003
Revised: 15.07.2003
English version:
Mathematical Notes, 2004, Volume 75, Issue 4, Pages 475–488
DOI: https://doi.org/10.1023/B:MATN.0000023331.50692.87
Bibliographic databases:
UDC: 514.742
Language: Russian
Citation: V. K. Beloshapka, “Universal Models For Real Submanifolds”, Mat. Zametki, 75:4 (2004), 507–522; Math. Notes, 75:4 (2004), 475–488
Citation in format AMSBIB
\Bibitem{Bel04}
\by V.~K.~Beloshapka
\paper Universal Models For Real Submanifolds
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 4
\pages 507--522
\mathnet{http://mi.mathnet.ru/mzm49}
\crossref{https://doi.org/10.4213/mzm49}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068283}
\zmath{https://zbmath.org/?q=an:1063.32010}
\elib{https://elibrary.ru/item.asp?id=13829394}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 4
\pages 475--488
\crossref{https://doi.org/10.1023/B:MATN.0000023331.50692.87}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221289900023}
Linking options:
  • https://www.mathnet.ru/eng/mzm49
  • https://doi.org/10.4213/mzm49
  • https://www.mathnet.ru/eng/mzm/v75/i4/p507
  • This publication is cited in the following 41 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1007
    Full-text PDF :319
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024