Abstract:
We derive various properties of the operator matrix
A=|0I−A0−D|,
where A0 is a uniformly positive operator and A−1/20DA−1/20 is a bounded nonnegative operator in a Hilbert space H. Such operator matrices are associated with second-order problems of the form ¨z(t)+A0z(t)+D˙z(t)=0, which are used as models for transverse motions of thin beams in the presence of damping.
Citation:
C. Trunk, “Spectral Theory for Operator Matrices Related to Models in Mechanics”, Mat. Zametki, 83:6 (2008), 923–932; Math. Notes, 83:6 (2008), 843–850
\Bibitem{Tru08}
\by C.~Trunk
\paper Spectral Theory for Operator Matrices Related to Models in Mechanics
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 6
\pages 923--932
\mathnet{http://mi.mathnet.ru/mzm4841}
\crossref{https://doi.org/10.4213/mzm4841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2451395}
\zmath{https://zbmath.org/?q=an:1169.47005}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 6
\pages 843--850
\crossref{https://doi.org/10.1134/S0001434608050295}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257399900029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-46749148408}
Linking options:
https://www.mathnet.ru/eng/mzm4841
https://doi.org/10.4213/mzm4841
https://www.mathnet.ru/eng/mzm/v83/i6/p923
This publication is cited in the following 5 articles:
Carsten Trunk, Operator Theory, 2024, 1
Jacob B. Langer M. Trunk C., “Variational principles for self-adjoint operator functions arising from second-order systems”, Oper. Matrices, 10:3 (2016), 501–531
Carsten Trunk, Operator Theory, 2015, 241
Carsten Trunk, Operator Theory, 2014, 1
Gesztesy F. Holden H., “The Damped String Problem Revisited”, J. Differ. Equ., 251:4-5 (2011), 1086–1127